Jiajia Shen , Jin Yang , Yeon Taek Choi , Rita Gonçalves , Rodrigo Pedro , D.A. Santana , F.G. Coury , N. Schell , Zhi Zeng , Hyoung Seop Kim , J.P. Oliveira
{"title":"Inconel 625增强CoCrFeMnNi高熵合金接头组织演变及局部强化机制","authors":"Jiajia Shen , Jin Yang , Yeon Taek Choi , Rita Gonçalves , Rodrigo Pedro , D.A. Santana , F.G. Coury , N. Schell , Zhi Zeng , Hyoung Seop Kim , J.P. Oliveira","doi":"10.1016/j.msea.2025.148452","DOIUrl":null,"url":null,"abstract":"<div><div>In the fusion-based welding processes, filler materials are commonly used to adjust and improve the composition of the fusion zone with the aim of optimizing both microstructure and mechanical properties. However, in the field of welding high entropy alloys, the influence of different filler materials on the microstructure and mechanical response is still scarce, owing to the yet incipient usage of welding technologies for these novel, advanced engineering alloys. To bridge this knowledge gap, Inconel 625 filler wire was used during gas metal arc welding of the well-known CoCrFeMnNi high entropy alloy. To systematically analyze the microstructure evolution and mechanical properties of the welded joints, multiscale characterization techniques were employed. It is shown that the different regions of the welded joint possess distinct microstructural features due to the weld thermal cycle, which is further compounded in the fusion zone by the introduction of the filler material. The use of Inconel 625 filler promotes a solid solution strengthening effect in the fusion zone and became the main contributor to the yield strength of this region (302 MPa (via solid solution strengthening) vs 478 MPa (yield stress from tensile experiments). Since Hall-Petch strengthening is predominant in both base material and heat affected zone, but not on the fusion zone due to the large grain structure that developed, the addition of Inconel 625 filler demonstrates to be a feasible approach to increase the typically low fusion zone strength. By coupling microstructural characterization with mechanical property analysis, aided by the calculation of the strengthening mechanisms, we unveil processing, microstructure, property relationships, providing a broader basis for the widespread application of gas metal arc welding for high entropy alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"937 ","pages":"Article 148452"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution and local strengthening mechanisms in CoCrFeMnNi high entropy alloy joints reinforced with Inconel 625\",\"authors\":\"Jiajia Shen , Jin Yang , Yeon Taek Choi , Rita Gonçalves , Rodrigo Pedro , D.A. Santana , F.G. Coury , N. Schell , Zhi Zeng , Hyoung Seop Kim , J.P. Oliveira\",\"doi\":\"10.1016/j.msea.2025.148452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the fusion-based welding processes, filler materials are commonly used to adjust and improve the composition of the fusion zone with the aim of optimizing both microstructure and mechanical properties. However, in the field of welding high entropy alloys, the influence of different filler materials on the microstructure and mechanical response is still scarce, owing to the yet incipient usage of welding technologies for these novel, advanced engineering alloys. To bridge this knowledge gap, Inconel 625 filler wire was used during gas metal arc welding of the well-known CoCrFeMnNi high entropy alloy. To systematically analyze the microstructure evolution and mechanical properties of the welded joints, multiscale characterization techniques were employed. It is shown that the different regions of the welded joint possess distinct microstructural features due to the weld thermal cycle, which is further compounded in the fusion zone by the introduction of the filler material. The use of Inconel 625 filler promotes a solid solution strengthening effect in the fusion zone and became the main contributor to the yield strength of this region (302 MPa (via solid solution strengthening) vs 478 MPa (yield stress from tensile experiments). Since Hall-Petch strengthening is predominant in both base material and heat affected zone, but not on the fusion zone due to the large grain structure that developed, the addition of Inconel 625 filler demonstrates to be a feasible approach to increase the typically low fusion zone strength. By coupling microstructural characterization with mechanical property analysis, aided by the calculation of the strengthening mechanisms, we unveil processing, microstructure, property relationships, providing a broader basis for the widespread application of gas metal arc welding for high entropy alloys.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"937 \",\"pages\":\"Article 148452\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509325006768\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325006768","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure evolution and local strengthening mechanisms in CoCrFeMnNi high entropy alloy joints reinforced with Inconel 625
In the fusion-based welding processes, filler materials are commonly used to adjust and improve the composition of the fusion zone with the aim of optimizing both microstructure and mechanical properties. However, in the field of welding high entropy alloys, the influence of different filler materials on the microstructure and mechanical response is still scarce, owing to the yet incipient usage of welding technologies for these novel, advanced engineering alloys. To bridge this knowledge gap, Inconel 625 filler wire was used during gas metal arc welding of the well-known CoCrFeMnNi high entropy alloy. To systematically analyze the microstructure evolution and mechanical properties of the welded joints, multiscale characterization techniques were employed. It is shown that the different regions of the welded joint possess distinct microstructural features due to the weld thermal cycle, which is further compounded in the fusion zone by the introduction of the filler material. The use of Inconel 625 filler promotes a solid solution strengthening effect in the fusion zone and became the main contributor to the yield strength of this region (302 MPa (via solid solution strengthening) vs 478 MPa (yield stress from tensile experiments). Since Hall-Petch strengthening is predominant in both base material and heat affected zone, but not on the fusion zone due to the large grain structure that developed, the addition of Inconel 625 filler demonstrates to be a feasible approach to increase the typically low fusion zone strength. By coupling microstructural characterization with mechanical property analysis, aided by the calculation of the strengthening mechanisms, we unveil processing, microstructure, property relationships, providing a broader basis for the widespread application of gas metal arc welding for high entropy alloys.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.