{"title":"了解影响化工热力学专业本科生成绩的因素","authors":"Edgar Clyde R. Lopez, Diana Pearl R. Arida","doi":"10.1016/j.ece.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the factors influencing student performance in Chemical Engineering Thermodynamics, focusing on personal, institutional, social, and external factors. We examine the role of teaching strategies, course design, and peer collaboration in enhancing student success. Key predictors of success include confidence in problem-solving, intrinsic motivation, and a strong foundation in prerequisite knowledge. Effective teaching strategies, such as well-structured course design, practical application of concepts, timely feedback, and engaging lectures, significantly enhance comprehension and academic performance. Peer collaboration, instructor accessibility, and a positive classroom environment further support student engagement and persistence. External challenges also impact outcomes and underscore the need for flexible academic policies and robust student support services. The study highlights the importance of a holistic and student-centered approach that integrates high-quality instruction, structured learning environments, and comprehensive support systems to foster resilience, deepen learning, and ensure long-term success.</div></div><div><h3>Tweetable Abstract</h3><div>Success in Chemical Engineering Thermodynamics depends on confidence, motivation, strong foundations, and support systems. Teaching strategies, course design, and peer collaboration are key. A holistic, student-centered approach fosters resilience, engagement, and long-term success.</div></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"52 ","pages":"Pages 37-50"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the factors influencing undergraduate performance in chemical engineering thermodynamics\",\"authors\":\"Edgar Clyde R. Lopez, Diana Pearl R. Arida\",\"doi\":\"10.1016/j.ece.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the factors influencing student performance in Chemical Engineering Thermodynamics, focusing on personal, institutional, social, and external factors. We examine the role of teaching strategies, course design, and peer collaboration in enhancing student success. Key predictors of success include confidence in problem-solving, intrinsic motivation, and a strong foundation in prerequisite knowledge. Effective teaching strategies, such as well-structured course design, practical application of concepts, timely feedback, and engaging lectures, significantly enhance comprehension and academic performance. Peer collaboration, instructor accessibility, and a positive classroom environment further support student engagement and persistence. External challenges also impact outcomes and underscore the need for flexible academic policies and robust student support services. The study highlights the importance of a holistic and student-centered approach that integrates high-quality instruction, structured learning environments, and comprehensive support systems to foster resilience, deepen learning, and ensure long-term success.</div></div><div><h3>Tweetable Abstract</h3><div>Success in Chemical Engineering Thermodynamics depends on confidence, motivation, strong foundations, and support systems. Teaching strategies, course design, and peer collaboration are key. A holistic, student-centered approach fosters resilience, engagement, and long-term success.</div></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":\"52 \",\"pages\":\"Pages 37-50\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772825000193\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772825000193","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Understanding the factors influencing undergraduate performance in chemical engineering thermodynamics
This study investigates the factors influencing student performance in Chemical Engineering Thermodynamics, focusing on personal, institutional, social, and external factors. We examine the role of teaching strategies, course design, and peer collaboration in enhancing student success. Key predictors of success include confidence in problem-solving, intrinsic motivation, and a strong foundation in prerequisite knowledge. Effective teaching strategies, such as well-structured course design, practical application of concepts, timely feedback, and engaging lectures, significantly enhance comprehension and academic performance. Peer collaboration, instructor accessibility, and a positive classroom environment further support student engagement and persistence. External challenges also impact outcomes and underscore the need for flexible academic policies and robust student support services. The study highlights the importance of a holistic and student-centered approach that integrates high-quality instruction, structured learning environments, and comprehensive support systems to foster resilience, deepen learning, and ensure long-term success.
Tweetable Abstract
Success in Chemical Engineering Thermodynamics depends on confidence, motivation, strong foundations, and support systems. Teaching strategies, course design, and peer collaboration are key. A holistic, student-centered approach fosters resilience, engagement, and long-term success.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning