利用碘化物- π共轭效应使I3 - /I2氧化还原偶对成为高压多碘锌电池

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiaqi Ke, Kai Bai, Zicheng Zhang, Zhipeng Wen*, Jinshuo Bu, Yongchao Tang, Xiaoqing Liu, Minghui Ye, Yufei Zhang and Cheng Chao Li*, 
{"title":"利用碘化物- π共轭效应使I3 - /I2氧化还原偶对成为高压多碘锌电池","authors":"Jiaqi Ke,&nbsp;Kai Bai,&nbsp;Zicheng Zhang,&nbsp;Zhipeng Wen*,&nbsp;Jinshuo Bu,&nbsp;Yongchao Tang,&nbsp;Xiaoqing Liu,&nbsp;Minghui Ye,&nbsp;Yufei Zhang and Cheng Chao Li*,&nbsp;","doi":"10.1021/acsnano.5c0278610.1021/acsnano.5c02786","DOIUrl":null,"url":null,"abstract":"<p >Distinct from the conventional I<sub>3</sub><sup>–</sup>/I<sup>–</sup> redox couple (1.299 V), the I<sub>3</sub><sup>–</sup>/I<sub>2</sub> redox couple (1.552 V) can enhance the output voltage and achieve higher energy density, which exhibits great development potential. However, the sluggish solid–liquid reaction rate, high conversion energy barrier, and high polyiodide solubility in aqueous electrolytes together hinder its development, especially at a low N/P ratio. Herein, we introduce an approach to achieve fast liquid–liquid reaction kinetics and a lower conversion barrier for high valence iodine electrochemistry of I<sub>3</sub><sup>–</sup>/I<sub>2</sub>, by coupling chemical liquefaction (MPII ionic liquid) and chelating catalyst (triazine-based poly(ionic liquid), PIL-tri). The MPII can spontaneously react with solid I<sub>2</sub> to generate liquid MPII<sub>3</sub>, increasing reaction contact sites and accelerating reaction kinetics. Besides, PIL-tri significantly lowers the conversion barrier from I<sub>3</sub><sup>–</sup> to I<sub>2</sub> and restricts the triiodide shuttling by distinctive iodide–π (I–π) conjugation with an I<sub>3</sub><sup>–</sup> electron cloud. Such a synergistic effect kinetically and thermodynamically ensures a high valence I<sub>3</sub><sup>–</sup>/I<sub>2</sub> redox couple. Consequently, PIL-tri@GP Zn-polyiodide batteries demonstrate a high output voltage (1.47 V), long cycling (800 cycles), and high-areal-capacity twice that of graphite paper (1.2 V) at a harsh N/P ratio (1). Meanwhile, they exhibited a polarity-switchable characteristic that maintained stable cyclability of 300 cycles when the anode and cathode were reversed every 50 cycles.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 18","pages":"17746–17759 17746–17759"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling I3–/I2 Redox Couple toward High-Voltage Zn-Polyiodide Batteries by the Iodide–π Conjugation Effect\",\"authors\":\"Jiaqi Ke,&nbsp;Kai Bai,&nbsp;Zicheng Zhang,&nbsp;Zhipeng Wen*,&nbsp;Jinshuo Bu,&nbsp;Yongchao Tang,&nbsp;Xiaoqing Liu,&nbsp;Minghui Ye,&nbsp;Yufei Zhang and Cheng Chao Li*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c0278610.1021/acsnano.5c02786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Distinct from the conventional I<sub>3</sub><sup>–</sup>/I<sup>–</sup> redox couple (1.299 V), the I<sub>3</sub><sup>–</sup>/I<sub>2</sub> redox couple (1.552 V) can enhance the output voltage and achieve higher energy density, which exhibits great development potential. However, the sluggish solid–liquid reaction rate, high conversion energy barrier, and high polyiodide solubility in aqueous electrolytes together hinder its development, especially at a low N/P ratio. Herein, we introduce an approach to achieve fast liquid–liquid reaction kinetics and a lower conversion barrier for high valence iodine electrochemistry of I<sub>3</sub><sup>–</sup>/I<sub>2</sub>, by coupling chemical liquefaction (MPII ionic liquid) and chelating catalyst (triazine-based poly(ionic liquid), PIL-tri). The MPII can spontaneously react with solid I<sub>2</sub> to generate liquid MPII<sub>3</sub>, increasing reaction contact sites and accelerating reaction kinetics. Besides, PIL-tri significantly lowers the conversion barrier from I<sub>3</sub><sup>–</sup> to I<sub>2</sub> and restricts the triiodide shuttling by distinctive iodide–π (I–π) conjugation with an I<sub>3</sub><sup>–</sup> electron cloud. Such a synergistic effect kinetically and thermodynamically ensures a high valence I<sub>3</sub><sup>–</sup>/I<sub>2</sub> redox couple. Consequently, PIL-tri@GP Zn-polyiodide batteries demonstrate a high output voltage (1.47 V), long cycling (800 cycles), and high-areal-capacity twice that of graphite paper (1.2 V) at a harsh N/P ratio (1). Meanwhile, they exhibited a polarity-switchable characteristic that maintained stable cyclability of 300 cycles when the anode and cathode were reversed every 50 cycles.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 18\",\"pages\":\"17746–17759 17746–17759\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c02786\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02786","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与传统的I3 - /I -氧化还原电偶(1.299 V)不同,I3 - /I2氧化还原电偶(1.552 V)可以提高输出电压,实现更高的能量密度,具有很大的发展潜力。然而,固液反应速度慢、转化能势垒高、多碘化物在水溶液中的溶解度高等问题阻碍了其发展,特别是在低N/P比条件下。在此,我们介绍了一种通过耦合化学液化(MPII离子液体)和螯合催化剂(三嗪基聚离子液体,PIL-tri)实现I3 - /I2的快速液液反应动力学和较低转化势垒的方法。MPII可以与固体I2自发反应生成液体MPII3,增加了反应接触位点,加快了反应动力学。此外,PIL-tri显著降低了I3 -到I2的转化势垒,并通过碘化物- π (I - π)与I3 -电子云的独特共轭作用限制了三碘化物的穿梭。这种协同效应在动力学和热力学上确保了高价I3 - /I2氧化还原偶对。因此,PIL-tri@GP多碘化锌电池在苛刻的N/P比(1)下具有高输出电压(1.47 V),长循环(800次循环)和高面积容量,是石墨纸(1.2 V)的两倍。同时,它们表现出极性可切换特性,当阳极和阴极每50次循环反转时,它们保持300次循环的稳定可循环性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enabling I3–/I2 Redox Couple toward High-Voltage Zn-Polyiodide Batteries by the Iodide–π Conjugation Effect

Enabling I3–/I2 Redox Couple toward High-Voltage Zn-Polyiodide Batteries by the Iodide–π Conjugation Effect

Distinct from the conventional I3/I redox couple (1.299 V), the I3/I2 redox couple (1.552 V) can enhance the output voltage and achieve higher energy density, which exhibits great development potential. However, the sluggish solid–liquid reaction rate, high conversion energy barrier, and high polyiodide solubility in aqueous electrolytes together hinder its development, especially at a low N/P ratio. Herein, we introduce an approach to achieve fast liquid–liquid reaction kinetics and a lower conversion barrier for high valence iodine electrochemistry of I3/I2, by coupling chemical liquefaction (MPII ionic liquid) and chelating catalyst (triazine-based poly(ionic liquid), PIL-tri). The MPII can spontaneously react with solid I2 to generate liquid MPII3, increasing reaction contact sites and accelerating reaction kinetics. Besides, PIL-tri significantly lowers the conversion barrier from I3 to I2 and restricts the triiodide shuttling by distinctive iodide–π (I–π) conjugation with an I3 electron cloud. Such a synergistic effect kinetically and thermodynamically ensures a high valence I3/I2 redox couple. Consequently, PIL-tri@GP Zn-polyiodide batteries demonstrate a high output voltage (1.47 V), long cycling (800 cycles), and high-areal-capacity twice that of graphite paper (1.2 V) at a harsh N/P ratio (1). Meanwhile, they exhibited a polarity-switchable characteristic that maintained stable cyclability of 300 cycles when the anode and cathode were reversed every 50 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信