Xinzhe Li, Xuan Liu, Muzammil Hussain, Jiali Li, Zhongxin Chen, Yiyun Fang*, Chenliang Su*, Chi He* and Jiong Lu*,
{"title":"双原子催化剂的工程局部配位和电子结构","authors":"Xinzhe Li, Xuan Liu, Muzammil Hussain, Jiali Li, Zhongxin Chen, Yiyun Fang*, Chenliang Su*, Chi He* and Jiong Lu*, ","doi":"10.1021/acsnano.5c0235310.1021/acsnano.5c02353","DOIUrl":null,"url":null,"abstract":"<p >Heterogeneous dual-atom catalysts (DACs), defined by atomically precise and isolated metal pairs on solid supports, have garnered significant interest in advancing catalytic processes and technologies aimed at achieving sustainable energy and chemical production. DACs present board opportunities for atomic-level structural and property engineering to enhance catalytic performance, which can effectively address the limitations of single-atom catalysts, including restricted active sites, spatial constraints, and the typically positive charge nature of supported single metal species. Despite the rapid progress in this field, the intricate relationship between local atomic environments and the catalytic behavior of dual-metal active sites remains insufficiently understood. This review highlights recent progress and major challenges in this field. We begin by discussing the local modulation of coordination and electronic structures in DACs and its impact on catalytic performance. Through specific case studies, we demonstrate the importance of optimizing the entire catalytic ensemble to achieve efficient, selective, and stable performance in both model and industrially relevant reactions. Additionally, we also outline future research directions, emphasizing the challenges and opportunities in synthesis, characterization, and practical applications, aiming to fully unlock the potential of these advanced catalysts.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 18","pages":"17114–17139 17114–17139"},"PeriodicalIF":16.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Local Coordination and Electronic Structures of Dual-Atom Catalysts\",\"authors\":\"Xinzhe Li, Xuan Liu, Muzammil Hussain, Jiali Li, Zhongxin Chen, Yiyun Fang*, Chenliang Su*, Chi He* and Jiong Lu*, \",\"doi\":\"10.1021/acsnano.5c0235310.1021/acsnano.5c02353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterogeneous dual-atom catalysts (DACs), defined by atomically precise and isolated metal pairs on solid supports, have garnered significant interest in advancing catalytic processes and technologies aimed at achieving sustainable energy and chemical production. DACs present board opportunities for atomic-level structural and property engineering to enhance catalytic performance, which can effectively address the limitations of single-atom catalysts, including restricted active sites, spatial constraints, and the typically positive charge nature of supported single metal species. Despite the rapid progress in this field, the intricate relationship between local atomic environments and the catalytic behavior of dual-metal active sites remains insufficiently understood. This review highlights recent progress and major challenges in this field. We begin by discussing the local modulation of coordination and electronic structures in DACs and its impact on catalytic performance. Through specific case studies, we demonstrate the importance of optimizing the entire catalytic ensemble to achieve efficient, selective, and stable performance in both model and industrially relevant reactions. Additionally, we also outline future research directions, emphasizing the challenges and opportunities in synthesis, characterization, and practical applications, aiming to fully unlock the potential of these advanced catalysts.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 18\",\"pages\":\"17114–17139 17114–17139\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c02353\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c02353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering Local Coordination and Electronic Structures of Dual-Atom Catalysts
Heterogeneous dual-atom catalysts (DACs), defined by atomically precise and isolated metal pairs on solid supports, have garnered significant interest in advancing catalytic processes and technologies aimed at achieving sustainable energy and chemical production. DACs present board opportunities for atomic-level structural and property engineering to enhance catalytic performance, which can effectively address the limitations of single-atom catalysts, including restricted active sites, spatial constraints, and the typically positive charge nature of supported single metal species. Despite the rapid progress in this field, the intricate relationship between local atomic environments and the catalytic behavior of dual-metal active sites remains insufficiently understood. This review highlights recent progress and major challenges in this field. We begin by discussing the local modulation of coordination and electronic structures in DACs and its impact on catalytic performance. Through specific case studies, we demonstrate the importance of optimizing the entire catalytic ensemble to achieve efficient, selective, and stable performance in both model and industrially relevant reactions. Additionally, we also outline future research directions, emphasizing the challenges and opportunities in synthesis, characterization, and practical applications, aiming to fully unlock the potential of these advanced catalysts.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.