Yuqing Li, Can Liu, Xiaocong Tang, Bohao Liu, Wei Zhao* and Yong Zhang*,
{"title":"金属纳米粒子修饰共振耦合效应:mos基化学阻性气体传感器高敏化的有效策略","authors":"Yuqing Li, Can Liu, Xiaocong Tang, Bohao Liu, Wei Zhao* and Yong Zhang*, ","doi":"10.1021/acs.langmuir.5c0076010.1021/acs.langmuir.5c00760","DOIUrl":null,"url":null,"abstract":"<p >Metal nanoparticle surface modification is a simple and efficient method to realize highly sensitive detection for chemiresistive gas sensors. Although a few theoretical explanations for the complicated matching relationship in the sensing system constructed from the modified metal, semiconductor material, and target gas have been proposed, there are no corresponding specific evaluation parameters based on the metal sensitization mechanism, which are crucial for the guidance of high-performance sensing materials design. Herein, taking MnO<sub>2</sub>-based chemiresistive gas sensors as examples, the improvement effect of the metal nanoparticles modification on the gas-sensing properties of MnO<sub>2</sub>-based chemiresistive sensors toward HCHO and NH<sub>3</sub> is investigated. Combined with the first-principle calculations based on density functional theory (DFT), a novel resonant coupling model based on the impurity energy levels, originating from charge transfer between target gas and metal, is first proposed to reveal the sensitization mechanism that the coupling strength between metal and target gas determines the carrier concentration of MOS. Coupling strength is closely positive correlated with the response, which provides an effective parameter to semiquantitatively describe the sensitization effect of metal nanoparticles on target gas. Our work establishes a model that clarifies the matching correlation in the sensing system and excavates new road to further comprehend the metal sensitization mechanism, which will provide an effective theoretical guide for the design of high-performance gas-sensing materials.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 18","pages":"11584–11591 11584–11591"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonant Coupling Effect by Metal Nanoparticles Modification: An Effective Strategy for High Sensitization of MOS-Based Chemiresistive Gas Sensors\",\"authors\":\"Yuqing Li, Can Liu, Xiaocong Tang, Bohao Liu, Wei Zhao* and Yong Zhang*, \",\"doi\":\"10.1021/acs.langmuir.5c0076010.1021/acs.langmuir.5c00760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal nanoparticle surface modification is a simple and efficient method to realize highly sensitive detection for chemiresistive gas sensors. Although a few theoretical explanations for the complicated matching relationship in the sensing system constructed from the modified metal, semiconductor material, and target gas have been proposed, there are no corresponding specific evaluation parameters based on the metal sensitization mechanism, which are crucial for the guidance of high-performance sensing materials design. Herein, taking MnO<sub>2</sub>-based chemiresistive gas sensors as examples, the improvement effect of the metal nanoparticles modification on the gas-sensing properties of MnO<sub>2</sub>-based chemiresistive sensors toward HCHO and NH<sub>3</sub> is investigated. Combined with the first-principle calculations based on density functional theory (DFT), a novel resonant coupling model based on the impurity energy levels, originating from charge transfer between target gas and metal, is first proposed to reveal the sensitization mechanism that the coupling strength between metal and target gas determines the carrier concentration of MOS. Coupling strength is closely positive correlated with the response, which provides an effective parameter to semiquantitatively describe the sensitization effect of metal nanoparticles on target gas. Our work establishes a model that clarifies the matching correlation in the sensing system and excavates new road to further comprehend the metal sensitization mechanism, which will provide an effective theoretical guide for the design of high-performance gas-sensing materials.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 18\",\"pages\":\"11584–11591 11584–11591\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00760\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00760","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Resonant Coupling Effect by Metal Nanoparticles Modification: An Effective Strategy for High Sensitization of MOS-Based Chemiresistive Gas Sensors
Metal nanoparticle surface modification is a simple and efficient method to realize highly sensitive detection for chemiresistive gas sensors. Although a few theoretical explanations for the complicated matching relationship in the sensing system constructed from the modified metal, semiconductor material, and target gas have been proposed, there are no corresponding specific evaluation parameters based on the metal sensitization mechanism, which are crucial for the guidance of high-performance sensing materials design. Herein, taking MnO2-based chemiresistive gas sensors as examples, the improvement effect of the metal nanoparticles modification on the gas-sensing properties of MnO2-based chemiresistive sensors toward HCHO and NH3 is investigated. Combined with the first-principle calculations based on density functional theory (DFT), a novel resonant coupling model based on the impurity energy levels, originating from charge transfer between target gas and metal, is first proposed to reveal the sensitization mechanism that the coupling strength between metal and target gas determines the carrier concentration of MOS. Coupling strength is closely positive correlated with the response, which provides an effective parameter to semiquantitatively describe the sensitization effect of metal nanoparticles on target gas. Our work establishes a model that clarifies the matching correlation in the sensing system and excavates new road to further comprehend the metal sensitization mechanism, which will provide an effective theoretical guide for the design of high-performance gas-sensing materials.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).