Nicole S. Lameirinhas, Maria C. Teixeira, João P. F. Carvalho, Bruno F. A. Valente, Jorge L. Luís, Iola F. Duarte, Ricardo J. B. Pinto, Helena Oliveira, José M. Oliveira, Armando J. D. Silvestre, Carla Vilela and Carmen S. R. Freire*,
{"title":"使用纳米纤维素增强明胶基水凝胶生物链接的HepG2细胞负载3D结构的生物制造:材料表征,细胞活力评估和代谢组学分析","authors":"Nicole S. Lameirinhas, Maria C. Teixeira, João P. F. Carvalho, Bruno F. A. Valente, Jorge L. Luís, Iola F. Duarte, Ricardo J. B. Pinto, Helena Oliveira, José M. Oliveira, Armando J. D. Silvestre, Carla Vilela and Carmen S. R. Freire*, ","doi":"10.1021/acsbiomaterials.4c0214810.1021/acsbiomaterials.4c02148","DOIUrl":null,"url":null,"abstract":"<p >The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2). This formulation combines the biological characteristics of Gel with the exceptional mechanical and rheological attributes of NFC. Gel/NFC ink formulations with different Gel/NFC mass compositions, viz., 90:10, 80:20, 70:30, and 60:40, were prepared and characterized. The corresponding cross-linked hydrogels were obtained using 1.5% (w/w) genipin as the cross-linking agent. The rheological and mechanical performances of the inks were enhanced by the addition of NFC, as evidenced by the rise in the yield stress from 70.9 ± 28.6 to 627.9 ± 74.8 Pa, compressive stress at 80% strain from 0.5 ± 0.1 to 1.5 ± 0.2 MPa, and Young’s modulus from 4.7 ± 0.9 to 12.1 ± 1.1 MPa, for 90:10 and 60:40 inks, respectively. Moreover, higher NFC contents translated into 3D structures with better shape fidelity and the possibility of printing more intricate structures. These hydrogels were noncytotoxic toward HepG2 cells for up to 48 h, with cell viabilities consistently above 80%. The ink 70:30 was loaded with HepG2 cells (2 × 10<sup>6</sup> cells mL<sup>–1</sup>) and bioprinted. Cell viability remained elevated (90 ± 4%) until day 14 postbioprinting, with cells maintaining their metabolic activity shown by <sup>1</sup>H NMR metabolomics, proving the enormous potential of Gel/NFC-based bioinks for bioprinting HepG2 cells without jeopardizing their viability and metabolism.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"3043–3057 3043–3057"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis\",\"authors\":\"Nicole S. Lameirinhas, Maria C. Teixeira, João P. F. Carvalho, Bruno F. A. Valente, Jorge L. Luís, Iola F. Duarte, Ricardo J. B. Pinto, Helena Oliveira, José M. Oliveira, Armando J. D. Silvestre, Carla Vilela and Carmen S. R. Freire*, \",\"doi\":\"10.1021/acsbiomaterials.4c0214810.1021/acsbiomaterials.4c02148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2). This formulation combines the biological characteristics of Gel with the exceptional mechanical and rheological attributes of NFC. Gel/NFC ink formulations with different Gel/NFC mass compositions, viz., 90:10, 80:20, 70:30, and 60:40, were prepared and characterized. The corresponding cross-linked hydrogels were obtained using 1.5% (w/w) genipin as the cross-linking agent. The rheological and mechanical performances of the inks were enhanced by the addition of NFC, as evidenced by the rise in the yield stress from 70.9 ± 28.6 to 627.9 ± 74.8 Pa, compressive stress at 80% strain from 0.5 ± 0.1 to 1.5 ± 0.2 MPa, and Young’s modulus from 4.7 ± 0.9 to 12.1 ± 1.1 MPa, for 90:10 and 60:40 inks, respectively. Moreover, higher NFC contents translated into 3D structures with better shape fidelity and the possibility of printing more intricate structures. These hydrogels were noncytotoxic toward HepG2 cells for up to 48 h, with cell viabilities consistently above 80%. The ink 70:30 was loaded with HepG2 cells (2 × 10<sup>6</sup> cells mL<sup>–1</sup>) and bioprinted. Cell viability remained elevated (90 ± 4%) until day 14 postbioprinting, with cells maintaining their metabolic activity shown by <sup>1</sup>H NMR metabolomics, proving the enormous potential of Gel/NFC-based bioinks for bioprinting HepG2 cells without jeopardizing their viability and metabolism.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"3043–3057 3043–3057\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c02148\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c02148","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis
The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2). This formulation combines the biological characteristics of Gel with the exceptional mechanical and rheological attributes of NFC. Gel/NFC ink formulations with different Gel/NFC mass compositions, viz., 90:10, 80:20, 70:30, and 60:40, were prepared and characterized. The corresponding cross-linked hydrogels were obtained using 1.5% (w/w) genipin as the cross-linking agent. The rheological and mechanical performances of the inks were enhanced by the addition of NFC, as evidenced by the rise in the yield stress from 70.9 ± 28.6 to 627.9 ± 74.8 Pa, compressive stress at 80% strain from 0.5 ± 0.1 to 1.5 ± 0.2 MPa, and Young’s modulus from 4.7 ± 0.9 to 12.1 ± 1.1 MPa, for 90:10 and 60:40 inks, respectively. Moreover, higher NFC contents translated into 3D structures with better shape fidelity and the possibility of printing more intricate structures. These hydrogels were noncytotoxic toward HepG2 cells for up to 48 h, with cell viabilities consistently above 80%. The ink 70:30 was loaded with HepG2 cells (2 × 106 cells mL–1) and bioprinted. Cell viability remained elevated (90 ± 4%) until day 14 postbioprinting, with cells maintaining their metabolic activity shown by 1H NMR metabolomics, proving the enormous potential of Gel/NFC-based bioinks for bioprinting HepG2 cells without jeopardizing their viability and metabolism.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture