{"title":"抗微生物聚合物抗微生物耐药性的化学创新","authors":"Zhangyong Si*, and , Mary B. Chan-Park*, ","doi":"10.1021/acsbiomaterials.4c0214710.1021/acsbiomaterials.4c02147","DOIUrl":null,"url":null,"abstract":"<p >The global rise of antimicrobial resistance (AMR) has rendered many traditional antibiotics ineffective, leading to an urgent need for alternative therapeutic strategies. Antimicrobial polymers, with their ability to rapidly kill bacteria by disrupting or crossing membranes and/or targeting multiple microbial functions without inducing resistance, offer a promising solution. This perspective explores recent innovations in the design and synthesis of antimicrobial polymers, focusing on their chemical motifs, structural derivatives, and their applications in combating systemic and topical infections. We also highlight key challenges in translating these materials from laboratory research to clinical practice, including issues related to the high dose required, bioavailability and stability in systemic infection treatment, and ability to disperse and kill biofilms in localized infection management. By addressing these challenges, antimicrobial polymers could play a crucial role in the development of next-generation therapeutics to combat multidrug-resistant pathogens. This perspective attempts to summarize significant insights for the design and development of advanced antimicrobial polymers to overcome AMR, offering potential pathways to improve clinical outcomes in treating systemic and local infections.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2470–2480 2470–2480"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Innovations of Antimicrobial Polymers for Combating Antimicrobial Resistance\",\"authors\":\"Zhangyong Si*, and , Mary B. Chan-Park*, \",\"doi\":\"10.1021/acsbiomaterials.4c0214710.1021/acsbiomaterials.4c02147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The global rise of antimicrobial resistance (AMR) has rendered many traditional antibiotics ineffective, leading to an urgent need for alternative therapeutic strategies. Antimicrobial polymers, with their ability to rapidly kill bacteria by disrupting or crossing membranes and/or targeting multiple microbial functions without inducing resistance, offer a promising solution. This perspective explores recent innovations in the design and synthesis of antimicrobial polymers, focusing on their chemical motifs, structural derivatives, and their applications in combating systemic and topical infections. We also highlight key challenges in translating these materials from laboratory research to clinical practice, including issues related to the high dose required, bioavailability and stability in systemic infection treatment, and ability to disperse and kill biofilms in localized infection management. By addressing these challenges, antimicrobial polymers could play a crucial role in the development of next-generation therapeutics to combat multidrug-resistant pathogens. This perspective attempts to summarize significant insights for the design and development of advanced antimicrobial polymers to overcome AMR, offering potential pathways to improve clinical outcomes in treating systemic and local infections.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"2470–2480 2470–2480\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c02147\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c02147","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Chemical Innovations of Antimicrobial Polymers for Combating Antimicrobial Resistance
The global rise of antimicrobial resistance (AMR) has rendered many traditional antibiotics ineffective, leading to an urgent need for alternative therapeutic strategies. Antimicrobial polymers, with their ability to rapidly kill bacteria by disrupting or crossing membranes and/or targeting multiple microbial functions without inducing resistance, offer a promising solution. This perspective explores recent innovations in the design and synthesis of antimicrobial polymers, focusing on their chemical motifs, structural derivatives, and their applications in combating systemic and topical infections. We also highlight key challenges in translating these materials from laboratory research to clinical practice, including issues related to the high dose required, bioavailability and stability in systemic infection treatment, and ability to disperse and kill biofilms in localized infection management. By addressing these challenges, antimicrobial polymers could play a crucial role in the development of next-generation therapeutics to combat multidrug-resistant pathogens. This perspective attempts to summarize significant insights for the design and development of advanced antimicrobial polymers to overcome AMR, offering potential pathways to improve clinical outcomes in treating systemic and local infections.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture