基于mos2的单层原子电阻的SET扫描阻性开关模型及其密度泛函理论模拟

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Aykut Turfanda*,  and , Alessio Gagliardi*, 
{"title":"基于mos2的单层原子电阻的SET扫描阻性开关模型及其密度泛函理论模拟","authors":"Aykut Turfanda*,&nbsp; and ,&nbsp;Alessio Gagliardi*,&nbsp;","doi":"10.1021/acsaelm.5c0006110.1021/acsaelm.5c00061","DOIUrl":null,"url":null,"abstract":"<p >We study the atomistic origins of resistive switching in atomristors through a single-layer MoS<sub>2</sub> and the Au(111) surface’s slab model. We aim to understand the main working mechanism and the physical phenomena governing these atomically thin resistive switching devices. For this, we use analytical models together with density functional theory simulations in a symbiotic relationship to explain the SET process and hysteresis. We found that our calculations with neutral and charged S-vacancy and with neutral and charged Au dopants may reveal the complex interface dynamics of atomristors. We conclude that a reversible breakdown mechanism occurs for SET, which is preceded by the degradation of single-layer MoS<sub>2</sub> during synthesis. Understanding the mechanism will allow us to fine-tune this low-energy consumption atomically thin resistive switching device to fulfill the necessities of neuromorphic computing better.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 9","pages":"3795–3809 3795–3809"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.5c00061","citationCount":"0","resultStr":"{\"title\":\"Single-Layer MoS2-Based Atomristor’s Resistive Switching Model for SET Sweep with Density Functional Theory Simulations\",\"authors\":\"Aykut Turfanda*,&nbsp; and ,&nbsp;Alessio Gagliardi*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c0006110.1021/acsaelm.5c00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We study the atomistic origins of resistive switching in atomristors through a single-layer MoS<sub>2</sub> and the Au(111) surface’s slab model. We aim to understand the main working mechanism and the physical phenomena governing these atomically thin resistive switching devices. For this, we use analytical models together with density functional theory simulations in a symbiotic relationship to explain the SET process and hysteresis. We found that our calculations with neutral and charged S-vacancy and with neutral and charged Au dopants may reveal the complex interface dynamics of atomristors. We conclude that a reversible breakdown mechanism occurs for SET, which is preceded by the degradation of single-layer MoS<sub>2</sub> during synthesis. Understanding the mechanism will allow us to fine-tune this low-energy consumption atomically thin resistive switching device to fulfill the necessities of neuromorphic computing better.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 9\",\"pages\":\"3795–3809 3795–3809\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.5c00061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00061\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00061","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们通过单层二硫化钼和Au(111)表面的平板模型研究了原子电阻器中电阻开关的原子起源。我们的目的是了解这些原子薄电阻开关器件的主要工作机制和物理现象。为此,我们在共生关系中使用解析模型和密度泛函理论模拟来解释SET过程和滞后。我们发现,我们对中性和带电s空位以及中性和带电Au掺杂剂的计算可能揭示了原子电阻的复杂界面动力学。我们得出结论,SET发生可逆击穿机制,在此之前,单层二硫化钼在合成过程中降解。了解其机制将使我们能够微调这种低能耗的原子薄电阻开关器件,以更好地满足神经形态计算的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-Layer MoS2-Based Atomristor’s Resistive Switching Model for SET Sweep with Density Functional Theory Simulations

We study the atomistic origins of resistive switching in atomristors through a single-layer MoS2 and the Au(111) surface’s slab model. We aim to understand the main working mechanism and the physical phenomena governing these atomically thin resistive switching devices. For this, we use analytical models together with density functional theory simulations in a symbiotic relationship to explain the SET process and hysteresis. We found that our calculations with neutral and charged S-vacancy and with neutral and charged Au dopants may reveal the complex interface dynamics of atomristors. We conclude that a reversible breakdown mechanism occurs for SET, which is preceded by the degradation of single-layer MoS2 during synthesis. Understanding the mechanism will allow us to fine-tune this low-energy consumption atomically thin resistive switching device to fulfill the necessities of neuromorphic computing better.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信