宽带单细胞阻抗生物传感器用磷酸缓冲盐水金微电极的片上纳米结构

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruben Van den Eeckhoudt*, Nurul Izni Rusli, Barbara Sieira, Susana Garcia Mayo, Sajid Hussain, Vasileios Vangalis, David Seveno, Kevin J. Verstrepen, Jon Ustarroz, Filip Tavernier, Michael Kraft and Irene Taurino, 
{"title":"宽带单细胞阻抗生物传感器用磷酸缓冲盐水金微电极的片上纳米结构","authors":"Ruben Van den Eeckhoudt*,&nbsp;Nurul Izni Rusli,&nbsp;Barbara Sieira,&nbsp;Susana Garcia Mayo,&nbsp;Sajid Hussain,&nbsp;Vasileios Vangalis,&nbsp;David Seveno,&nbsp;Kevin J. Verstrepen,&nbsp;Jon Ustarroz,&nbsp;Filip Tavernier,&nbsp;Michael Kraft and Irene Taurino,&nbsp;","doi":"10.1021/acsaelm.5c0005010.1021/acsaelm.5c00050","DOIUrl":null,"url":null,"abstract":"<p >Impedance-based single-cell sensors are gaining increased interest due to their affordability, potential for miniaturization and label-free nature. However, their sensitivity is restricted due to the electrical double layer effect which prevents accurate assessment of cell properties at low frequencies, e.g., cell size and membrane properties. This effect becomes increasingly problematic when the electrode size is reduced since then the double layer impedance dominates up to higher frequencies. This paper describes an extremely fast (1 s) technique for on-chip nanostructuring of gold microelectrodes that can be used for single cell impedance sensors. The developed technique achieves a 40-fold reduction in double layer impedance at 1 kHz by nanostructuring ready-made gold coplanar microelectrodes on chip without requiring extra fabrication steps. The technique uses only a DC voltage source and a 100× diluted phosphate-buffered saline (PBS) solution, making it cost-effective, nonhazardous, and ideally suited for a batch process. A comparison of single-cell impedance measurements of <i>Saccharomyces cerevisiae</i> yeast using bare and nanostructured microelectrodes shows improved reproducibility and accuracy for frequencies below 100 kHz.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 9","pages":"3786–3794 3786–3794"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Chip Nanostructuring of Gold Microelectrodes in Phosphate-Buffered Saline for Broadband Single-Cell Impedance Biosensors\",\"authors\":\"Ruben Van den Eeckhoudt*,&nbsp;Nurul Izni Rusli,&nbsp;Barbara Sieira,&nbsp;Susana Garcia Mayo,&nbsp;Sajid Hussain,&nbsp;Vasileios Vangalis,&nbsp;David Seveno,&nbsp;Kevin J. Verstrepen,&nbsp;Jon Ustarroz,&nbsp;Filip Tavernier,&nbsp;Michael Kraft and Irene Taurino,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c0005010.1021/acsaelm.5c00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Impedance-based single-cell sensors are gaining increased interest due to their affordability, potential for miniaturization and label-free nature. However, their sensitivity is restricted due to the electrical double layer effect which prevents accurate assessment of cell properties at low frequencies, e.g., cell size and membrane properties. This effect becomes increasingly problematic when the electrode size is reduced since then the double layer impedance dominates up to higher frequencies. This paper describes an extremely fast (1 s) technique for on-chip nanostructuring of gold microelectrodes that can be used for single cell impedance sensors. The developed technique achieves a 40-fold reduction in double layer impedance at 1 kHz by nanostructuring ready-made gold coplanar microelectrodes on chip without requiring extra fabrication steps. The technique uses only a DC voltage source and a 100× diluted phosphate-buffered saline (PBS) solution, making it cost-effective, nonhazardous, and ideally suited for a batch process. A comparison of single-cell impedance measurements of <i>Saccharomyces cerevisiae</i> yeast using bare and nanostructured microelectrodes shows improved reproducibility and accuracy for frequencies below 100 kHz.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 9\",\"pages\":\"3786–3794 3786–3794\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00050\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于阻抗的单细胞传感器由于其可负担性、小型化潜力和无标签性而受到越来越多的关注。然而,由于电双层效应,它们的灵敏度受到限制,这妨碍了在低频下准确评估细胞特性,例如细胞大小和膜特性。当电极尺寸减小时,这种效应变得越来越成问题,因为那时双层阻抗占主导地位,直到更高的频率。本文描述了一种极快(1秒)的金微电极片上纳米结构技术,可用于单细胞阻抗传感器。该技术通过在芯片上纳米结构现成的金共面微电极,实现了1 kHz时双层阻抗降低40倍,而无需额外的制造步骤。该技术仅使用直流电压源和100倍稀释的磷酸盐缓冲盐水(PBS)溶液,使其具有成本效益,无害,非常适合批量工艺。使用裸电极和纳米结构微电极测量酿酒酵母单细胞阻抗的比较表明,在100 kHz以下频率下,可重复性和准确性有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On-Chip Nanostructuring of Gold Microelectrodes in Phosphate-Buffered Saline for Broadband Single-Cell Impedance Biosensors

On-Chip Nanostructuring of Gold Microelectrodes in Phosphate-Buffered Saline for Broadband Single-Cell Impedance Biosensors

Impedance-based single-cell sensors are gaining increased interest due to their affordability, potential for miniaturization and label-free nature. However, their sensitivity is restricted due to the electrical double layer effect which prevents accurate assessment of cell properties at low frequencies, e.g., cell size and membrane properties. This effect becomes increasingly problematic when the electrode size is reduced since then the double layer impedance dominates up to higher frequencies. This paper describes an extremely fast (1 s) technique for on-chip nanostructuring of gold microelectrodes that can be used for single cell impedance sensors. The developed technique achieves a 40-fold reduction in double layer impedance at 1 kHz by nanostructuring ready-made gold coplanar microelectrodes on chip without requiring extra fabrication steps. The technique uses only a DC voltage source and a 100× diluted phosphate-buffered saline (PBS) solution, making it cost-effective, nonhazardous, and ideally suited for a batch process. A comparison of single-cell impedance measurements of Saccharomyces cerevisiae yeast using bare and nanostructured microelectrodes shows improved reproducibility and accuracy for frequencies below 100 kHz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信