为冷场发射阴极剪裁氧化钨层:阳极氧化和热氧化方法

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zuzana Košelová*, Mohammad M. Allaham, Daniel Burda, Zuzana Pokorná, Dinara Sobola, Alexandr Knápek and Zdenka Fohlerová, 
{"title":"为冷场发射阴极剪裁氧化钨层:阳极氧化和热氧化方法","authors":"Zuzana Košelová*,&nbsp;Mohammad M. Allaham,&nbsp;Daniel Burda,&nbsp;Zuzana Pokorná,&nbsp;Dinara Sobola,&nbsp;Alexandr Knápek and Zdenka Fohlerová,&nbsp;","doi":"10.1021/acsaelm.5c0024110.1021/acsaelm.5c00241","DOIUrl":null,"url":null,"abstract":"<p >This study explores the optimization of tungsten oxide layers formed via thermal oxidation and anodization for cold field emission applications. Surface modifications can enhance tungsten emitters by improving the emission stability and reducing ion-induced damage. Polycrystalline tungsten samples were treated using two oxidation methods: thermal oxidation (at 550–750 °C, 10<sup>3</sup>–10<sup>4</sup> Pa) and anodization (in 0.33 mol/L H<sub>3</sub>PO<sub>4</sub> at 5–35 V). Lower temperatures and pressures (550 °C, 10<sup>3</sup> Pa) produced smoother (<i>R</i><sub>a</sub> ∼ 23 nm) and uniform oxide layers (∼240 nm thick), improving the high-voltage stability (7.5–8.5 kV). Anodized layers, while less stable at high voltages, exhibited enhanced emission at lower operational voltages (∼5.5–7 kV). Field emission microscopy confirmed that thermally oxidized layers perform better under high electrostatic fields, whereas anodized layers offer a rapid response and lower threshold voltages. These findings demonstrate that both oxidation techniques are scalable and tunable for optimizing cold field emitters, with tailored properties suited to specific applications in electron microscopy and related technologies.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 9","pages":"4013–4024 4013–4024"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Tungsten Oxide Layers for Cold Field Emission Cathodes: Anodization and Thermal Oxidation Approaches\",\"authors\":\"Zuzana Košelová*,&nbsp;Mohammad M. Allaham,&nbsp;Daniel Burda,&nbsp;Zuzana Pokorná,&nbsp;Dinara Sobola,&nbsp;Alexandr Knápek and Zdenka Fohlerová,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c0024110.1021/acsaelm.5c00241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study explores the optimization of tungsten oxide layers formed via thermal oxidation and anodization for cold field emission applications. Surface modifications can enhance tungsten emitters by improving the emission stability and reducing ion-induced damage. Polycrystalline tungsten samples were treated using two oxidation methods: thermal oxidation (at 550–750 °C, 10<sup>3</sup>–10<sup>4</sup> Pa) and anodization (in 0.33 mol/L H<sub>3</sub>PO<sub>4</sub> at 5–35 V). Lower temperatures and pressures (550 °C, 10<sup>3</sup> Pa) produced smoother (<i>R</i><sub>a</sub> ∼ 23 nm) and uniform oxide layers (∼240 nm thick), improving the high-voltage stability (7.5–8.5 kV). Anodized layers, while less stable at high voltages, exhibited enhanced emission at lower operational voltages (∼5.5–7 kV). Field emission microscopy confirmed that thermally oxidized layers perform better under high electrostatic fields, whereas anodized layers offer a rapid response and lower threshold voltages. These findings demonstrate that both oxidation techniques are scalable and tunable for optimizing cold field emitters, with tailored properties suited to specific applications in electron microscopy and related technologies.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 9\",\"pages\":\"4013–4024 4013–4024\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00241\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00241","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索了通过热氧化和阳极氧化形成的氧化钨层在冷场发射应用中的优化。表面改性可以提高钨发射体的发射稳定性,减少离子损伤。采用热氧化(550 ~ 750℃,103 ~ 104 Pa)和阳极氧化(5 ~ 35 V, 0.33 mol/L H3PO4)两种氧化方法处理多晶钨。较低的温度和压力(550°C, 103 Pa)产生了更光滑(Ra ~ 23 nm)和均匀的氧化层(~ 240 nm厚),提高了高压稳定性(7.5-8.5 kV)。阳极氧化层虽然在高压下稳定性较差,但在较低的工作电压(~ 5.5-7 kV)下表现出增强的发射。场发射显微镜证实,热氧化层在高静电场下表现更好,而阳极氧化层具有快速响应和较低的阈值电压。这些发现表明,这两种氧化技术都是可扩展和可调的,可以优化冷场发射器,具有适合电子显微镜和相关技术特定应用的定制特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Tungsten Oxide Layers for Cold Field Emission Cathodes: Anodization and Thermal Oxidation Approaches

Tailoring Tungsten Oxide Layers for Cold Field Emission Cathodes: Anodization and Thermal Oxidation Approaches

This study explores the optimization of tungsten oxide layers formed via thermal oxidation and anodization for cold field emission applications. Surface modifications can enhance tungsten emitters by improving the emission stability and reducing ion-induced damage. Polycrystalline tungsten samples were treated using two oxidation methods: thermal oxidation (at 550–750 °C, 103–104 Pa) and anodization (in 0.33 mol/L H3PO4 at 5–35 V). Lower temperatures and pressures (550 °C, 103 Pa) produced smoother (Ra ∼ 23 nm) and uniform oxide layers (∼240 nm thick), improving the high-voltage stability (7.5–8.5 kV). Anodized layers, while less stable at high voltages, exhibited enhanced emission at lower operational voltages (∼5.5–7 kV). Field emission microscopy confirmed that thermally oxidized layers perform better under high electrostatic fields, whereas anodized layers offer a rapid response and lower threshold voltages. These findings demonstrate that both oxidation techniques are scalable and tunable for optimizing cold field emitters, with tailored properties suited to specific applications in electron microscopy and related technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信