Monireh Kouhi*, Mohammad Khodaei, Bahareh Behrouznejad, Omid Savabi and Mahdi Bodaghi,
{"title":"玉米蛋白/ zno修饰的3d打印PCL/Sphene支架具有更好的细菌抑制和成骨细胞活性,用于骨再生应用","authors":"Monireh Kouhi*, Mohammad Khodaei, Bahareh Behrouznejad, Omid Savabi and Mahdi Bodaghi, ","doi":"10.1021/acsbiomaterials.4c0219310.1021/acsbiomaterials.4c02193","DOIUrl":null,"url":null,"abstract":"<p >3D printing offers a significant advantage in creating bioengineering scaffolds for patient-specific treatments of bony defects. In this study, a 3D-printed polycaprolactone (PCL)/sphene (SP, CaTiSiO5) scaffold coated with zein/ZnO was fabricated to provide a suitable environment for bone regeneration. SP nanoparticles were synthesized using a mechanochemical method and characterized by SEM-EDS, FTIR, and XRD. 0–30 wt % of prepared SP nanoparticles was used to fabricate 3D-printed PCL-based scaffolds. Incorporation of SP into PCL scaffolds (up to 20 wt %) significantly increased compressive strength (from 37.5 to 65.2 MPa) and modulus (from 0.33 to 0.63 MPa). <i>In vitro</i> bioactivity evaluation in simulated body fluid demonstrated the apatite formation ability of PCL/SP scaffolds, as confirmed by SEM-EDS analysis. Compared to PCL/SP, the zein/ZnO-modified scaffold showed increased surface hydrophilicity and significantly higher values of bactericidal potency against <i>S. aureus</i> and <i>E. coli</i>. Additionally, MTT assay, cell attachment, and alkaline phosphatase activity revealed that zein and ZnO coexistence on PCL/SP scaffolds resulted in significantly higher cell proliferation, improved cell adhesion, and enhanced osteogenic differentiation of MG-63 cells compared to unmodified samples. Overall, zein/ZnO-modified 3D-printed PCL/SP nanocomposite scaffolds with desirable physicochemical, mechanical, and biological characteristics can serve as superior platforms for bone regeneration applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2898–2909 2898–2909"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zein/ZnO-Modified 3D-Printed PCL/Sphene Scaffolds with Improved Bacterial Inhibition and Osteoblast Activity for Bone Regeneration Applications\",\"authors\":\"Monireh Kouhi*, Mohammad Khodaei, Bahareh Behrouznejad, Omid Savabi and Mahdi Bodaghi, \",\"doi\":\"10.1021/acsbiomaterials.4c0219310.1021/acsbiomaterials.4c02193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >3D printing offers a significant advantage in creating bioengineering scaffolds for patient-specific treatments of bony defects. In this study, a 3D-printed polycaprolactone (PCL)/sphene (SP, CaTiSiO5) scaffold coated with zein/ZnO was fabricated to provide a suitable environment for bone regeneration. SP nanoparticles were synthesized using a mechanochemical method and characterized by SEM-EDS, FTIR, and XRD. 0–30 wt % of prepared SP nanoparticles was used to fabricate 3D-printed PCL-based scaffolds. Incorporation of SP into PCL scaffolds (up to 20 wt %) significantly increased compressive strength (from 37.5 to 65.2 MPa) and modulus (from 0.33 to 0.63 MPa). <i>In vitro</i> bioactivity evaluation in simulated body fluid demonstrated the apatite formation ability of PCL/SP scaffolds, as confirmed by SEM-EDS analysis. Compared to PCL/SP, the zein/ZnO-modified scaffold showed increased surface hydrophilicity and significantly higher values of bactericidal potency against <i>S. aureus</i> and <i>E. coli</i>. Additionally, MTT assay, cell attachment, and alkaline phosphatase activity revealed that zein and ZnO coexistence on PCL/SP scaffolds resulted in significantly higher cell proliferation, improved cell adhesion, and enhanced osteogenic differentiation of MG-63 cells compared to unmodified samples. Overall, zein/ZnO-modified 3D-printed PCL/SP nanocomposite scaffolds with desirable physicochemical, mechanical, and biological characteristics can serve as superior platforms for bone regeneration applications.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 5\",\"pages\":\"2898–2909 2898–2909\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c02193\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c02193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Zein/ZnO-Modified 3D-Printed PCL/Sphene Scaffolds with Improved Bacterial Inhibition and Osteoblast Activity for Bone Regeneration Applications
3D printing offers a significant advantage in creating bioengineering scaffolds for patient-specific treatments of bony defects. In this study, a 3D-printed polycaprolactone (PCL)/sphene (SP, CaTiSiO5) scaffold coated with zein/ZnO was fabricated to provide a suitable environment for bone regeneration. SP nanoparticles were synthesized using a mechanochemical method and characterized by SEM-EDS, FTIR, and XRD. 0–30 wt % of prepared SP nanoparticles was used to fabricate 3D-printed PCL-based scaffolds. Incorporation of SP into PCL scaffolds (up to 20 wt %) significantly increased compressive strength (from 37.5 to 65.2 MPa) and modulus (from 0.33 to 0.63 MPa). In vitro bioactivity evaluation in simulated body fluid demonstrated the apatite formation ability of PCL/SP scaffolds, as confirmed by SEM-EDS analysis. Compared to PCL/SP, the zein/ZnO-modified scaffold showed increased surface hydrophilicity and significantly higher values of bactericidal potency against S. aureus and E. coli. Additionally, MTT assay, cell attachment, and alkaline phosphatase activity revealed that zein and ZnO coexistence on PCL/SP scaffolds resulted in significantly higher cell proliferation, improved cell adhesion, and enhanced osteogenic differentiation of MG-63 cells compared to unmodified samples. Overall, zein/ZnO-modified 3D-printed PCL/SP nanocomposite scaffolds with desirable physicochemical, mechanical, and biological characteristics can serve as superior platforms for bone regeneration applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture