HfO2@Fe3O4核壳纳米管的合成和表征:对潜在磁功能的见解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Lukas Grifferos, Daniela Alburquenque, Javiera Vargas, Chandra Kumar, Eduardo Saavedra, Alejandro Pereira, José F. Marco and Juan Escrig*, 
{"title":"HfO2@Fe3O4核壳纳米管的合成和表征:对潜在磁功能的见解","authors":"Lukas Grifferos,&nbsp;Daniela Alburquenque,&nbsp;Javiera Vargas,&nbsp;Chandra Kumar,&nbsp;Eduardo Saavedra,&nbsp;Alejandro Pereira,&nbsp;José F. Marco and Juan Escrig*,&nbsp;","doi":"10.1021/acsaelm.5c0028010.1021/acsaelm.5c00280","DOIUrl":null,"url":null,"abstract":"<p >This study presents the synthesis and characterization of core–shell nanostructures comprising PVP@HfO<sub>2</sub>@Fe<sub>2</sub>O<sub>3</sub> nanowires and HfO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub> nanotubes. PVP nanofibers were electrospun with an average diameter of approximately 379 nm, onto which HfO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> layers were sequentially deposited via atomic layer deposition, resulting in core–shell nanowires averaging 460 nm in diameter. Thermal reduction transformed Fe<sub>2</sub>O<sub>3</sub> into Fe<sub>3</sub>O<sub>4</sub>, forming HfO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub> core–shell nanotubes. Characterization using scanning electron microscopy and high-resolution transmission electron microscopy confirmed the core–shell morphology, while energy-dispersive X-ray spectroscopy verified the elemental composition. Surface roughness analysis revealed fractal dimensions indicating increased roughness with thicker shells. X-ray photoelectron spectroscopy analysis identified Fe(II) and Fe(III) oxidation states and confirmed phase transformations from hematite to magnetite. Magnetic measurements demonstrated enhanced coercivity and saturation magnetization in HfO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub> structures compared to initial samples, showcasing the tunability of magnetic properties through core–shell engineering. This work highlights atomic layer deposition’s capability to fabricate precise core–shell nanostructures, offering tailored control over morphology and magnetic behavior for applications in advanced nanotechnologies.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 9","pages":"4103–4113 4103–4113"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of HfO2@Fe3O4 Core–Shell Nanotubes: Insights into Potential Magnetic Functionalities\",\"authors\":\"Lukas Grifferos,&nbsp;Daniela Alburquenque,&nbsp;Javiera Vargas,&nbsp;Chandra Kumar,&nbsp;Eduardo Saavedra,&nbsp;Alejandro Pereira,&nbsp;José F. Marco and Juan Escrig*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c0028010.1021/acsaelm.5c00280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study presents the synthesis and characterization of core–shell nanostructures comprising PVP@HfO<sub>2</sub>@Fe<sub>2</sub>O<sub>3</sub> nanowires and HfO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub> nanotubes. PVP nanofibers were electrospun with an average diameter of approximately 379 nm, onto which HfO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> layers were sequentially deposited via atomic layer deposition, resulting in core–shell nanowires averaging 460 nm in diameter. Thermal reduction transformed Fe<sub>2</sub>O<sub>3</sub> into Fe<sub>3</sub>O<sub>4</sub>, forming HfO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub> core–shell nanotubes. Characterization using scanning electron microscopy and high-resolution transmission electron microscopy confirmed the core–shell morphology, while energy-dispersive X-ray spectroscopy verified the elemental composition. Surface roughness analysis revealed fractal dimensions indicating increased roughness with thicker shells. X-ray photoelectron spectroscopy analysis identified Fe(II) and Fe(III) oxidation states and confirmed phase transformations from hematite to magnetite. Magnetic measurements demonstrated enhanced coercivity and saturation magnetization in HfO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub> structures compared to initial samples, showcasing the tunability of magnetic properties through core–shell engineering. This work highlights atomic layer deposition’s capability to fabricate precise core–shell nanostructures, offering tailored control over morphology and magnetic behavior for applications in advanced nanotechnologies.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 9\",\"pages\":\"4103–4113 4103–4113\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c00280\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00280","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由PVP@HfO2@Fe2O3纳米线和HfO2@Fe3O4纳米管组成的核壳纳米结构的合成和表征。静电纺丝PVP纳米纤维的平均直径约为379 nm,通过原子层沉积在其上依次沉积HfO2和Fe2O3层,得到平均直径为460 nm的核壳纳米线。热还原将Fe2O3转化为Fe3O4,形成HfO2@Fe3O4核壳纳米管。利用扫描电子显微镜和高分辨率透射电子显微镜进行表征,证实了核壳形态,而能量色散x射线光谱证实了元素组成。表面粗糙度分析显示,分形维数表明,随着外壳厚度的增加,粗糙度增加。x射线光电子能谱分析确定了Fe(II)和Fe(III)氧化态,并证实了从赤铁矿到磁铁矿的相变。磁性测量表明,与初始样品相比,HfO2@Fe3O4结构的矫顽力和饱和磁化增强,通过核壳工程展示了磁性质的可调性。这项工作突出了原子层沉积制造精确核壳纳米结构的能力,为先进纳米技术的应用提供了对形态和磁性行为的定制控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and Characterization of HfO2@Fe3O4 Core–Shell Nanotubes: Insights into Potential Magnetic Functionalities

Synthesis and Characterization of HfO2@Fe3O4 Core–Shell Nanotubes: Insights into Potential Magnetic Functionalities

This study presents the synthesis and characterization of core–shell nanostructures comprising PVP@HfO2@Fe2O3 nanowires and HfO2@Fe3O4 nanotubes. PVP nanofibers were electrospun with an average diameter of approximately 379 nm, onto which HfO2 and Fe2O3 layers were sequentially deposited via atomic layer deposition, resulting in core–shell nanowires averaging 460 nm in diameter. Thermal reduction transformed Fe2O3 into Fe3O4, forming HfO2@Fe3O4 core–shell nanotubes. Characterization using scanning electron microscopy and high-resolution transmission electron microscopy confirmed the core–shell morphology, while energy-dispersive X-ray spectroscopy verified the elemental composition. Surface roughness analysis revealed fractal dimensions indicating increased roughness with thicker shells. X-ray photoelectron spectroscopy analysis identified Fe(II) and Fe(III) oxidation states and confirmed phase transformations from hematite to magnetite. Magnetic measurements demonstrated enhanced coercivity and saturation magnetization in HfO2@Fe3O4 structures compared to initial samples, showcasing the tunability of magnetic properties through core–shell engineering. This work highlights atomic layer deposition’s capability to fabricate precise core–shell nanostructures, offering tailored control over morphology and magnetic behavior for applications in advanced nanotechnologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信