标准化鞅在Kolmogorov和Wasserstein距离上的收敛速率

IF 1.2 3区 数学 Q1 MATHEMATICS
Xiequan Fan , Zhonggen Su
{"title":"标准化鞅在Kolmogorov和Wasserstein距离上的收敛速率","authors":"Xiequan Fan ,&nbsp;Zhonggen Su","doi":"10.1016/j.jmaa.2025.129630","DOIUrl":null,"url":null,"abstract":"<div><div>We give some rates of convergence in the distances of Kolmogorov and Wasserstein for standardized martingales with differences having finite variances. For the Kolmogorov distances, we present some exact Berry-Esseen bounds for martingales, which generalizes some Berry-Esseen bounds due to Bolthausen. In consequence, a Lindeberg type condition for the martingale central limit theorem is obtained. For the Wasserstein distance, with Stein's method and Lindeberg's telescoping sum argument, the rates of convergence in martingale central limit theorems recover the classical rates for sums of i.i.d. random variables, and therefore they are believed to be optimal.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129630"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rates of convergence in the distances of Kolmogorov and Wasserstein for standardized martingales\",\"authors\":\"Xiequan Fan ,&nbsp;Zhonggen Su\",\"doi\":\"10.1016/j.jmaa.2025.129630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give some rates of convergence in the distances of Kolmogorov and Wasserstein for standardized martingales with differences having finite variances. For the Kolmogorov distances, we present some exact Berry-Esseen bounds for martingales, which generalizes some Berry-Esseen bounds due to Bolthausen. In consequence, a Lindeberg type condition for the martingale central limit theorem is obtained. For the Wasserstein distance, with Stein's method and Lindeberg's telescoping sum argument, the rates of convergence in martingale central limit theorems recover the classical rates for sums of i.i.d. random variables, and therefore they are believed to be optimal.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129630\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004111\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004111","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了具有有限方差差异的标准化鞅在Kolmogorov和Wasserstein距离上的一些收敛速率。对于Kolmogorov距离,我们给出了鞅的一些精确的berry - essee界,它推广了Bolthausen的一些berry - essee界。得到了鞅中心极限定理的一个Lindeberg型条件。对于Wasserstein距离,利用Stein的方法和Lindeberg的伸缩和论证,鞅中心极限定理的收敛速度恢复了经典的i.i.d随机变量和的收敛速度,因此它们被认为是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rates of convergence in the distances of Kolmogorov and Wasserstein for standardized martingales
We give some rates of convergence in the distances of Kolmogorov and Wasserstein for standardized martingales with differences having finite variances. For the Kolmogorov distances, we present some exact Berry-Esseen bounds for martingales, which generalizes some Berry-Esseen bounds due to Bolthausen. In consequence, a Lindeberg type condition for the martingale central limit theorem is obtained. For the Wasserstein distance, with Stein's method and Lindeberg's telescoping sum argument, the rates of convergence in martingale central limit theorems recover the classical rates for sums of i.i.d. random variables, and therefore they are believed to be optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信