空间位阻工程稳定双相Na4Fe3(PO4)2P2O7-Na2FeP2O7阴极结构演变

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xu Wang , Huangxu Li , Xiaochen Ge , Liang He , Shihao Li , Yi Zhang , Jiahao Gu , Wen Zhou , Yanqing Lai , Zhian Zhang
{"title":"空间位阻工程稳定双相Na4Fe3(PO4)2P2O7-Na2FeP2O7阴极结构演变","authors":"Xu Wang ,&nbsp;Huangxu Li ,&nbsp;Xiaochen Ge ,&nbsp;Liang He ,&nbsp;Shihao Li ,&nbsp;Yi Zhang ,&nbsp;Jiahao Gu ,&nbsp;Wen Zhou ,&nbsp;Yanqing Lai ,&nbsp;Zhian Zhang","doi":"10.1016/j.ensm.2025.104308","DOIUrl":null,"url":null,"abstract":"<div><div>The low-cost iron-based polyanionic Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) represent a 3D Na<sup>+</sup> pathways and voltage-advantageous cathode material in sodium-ion batteries. Nevertheless, anisotropic lattice strain and stress generated during sodium (de)intercalation induces prominent local structural changes, deteriorating the long-term stability. Herein, this paper proposes the steric hindrance engineering of Na<sub>2</sub>FeP<sub>2</sub>O<sub>7</sub> phase (NFPO) to restrict the intramolecular motion and stabilize structural evolution in a biphasic structure Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub><img>Na<sub>2</sub>FeP<sub>2</sub>O<sub>7</sub> (NFPP-4.1). The crystal domains of the NFPO phase are interlaced with the NFPP, and the NFPO with minimal volume change can mitigate local structural changes, thereby ensuring robust structural evolution. In addition, theoretical calculations and experiments corroborate that NFPO has abundant Na<sup>+</sup> channels and rapid diffusion kinetics. Consequently, NFPP-4.1 exhibits excellent rate performance (91.4 mAh g<sup>-1</sup>at 10 C) and prolonged cycle duration (capacity retention of 77.8 % after 8000 cycles). The stable structural evolution is underscored by minimal volume change of only 3.59 % observed in the platform region of the sodium storage. This study provides a new insight into the structural evolution of biphasic materials via steric hindrance engineering which can shed light on the development of long-cycle iron-based cathode materials.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"79 ","pages":"Article 104308"},"PeriodicalIF":18.9000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steric-hindrance engineering to stabilize structural evolution in biphasic Na4Fe3(PO4)2P2O7Na2FeP2O7 cathode\",\"authors\":\"Xu Wang ,&nbsp;Huangxu Li ,&nbsp;Xiaochen Ge ,&nbsp;Liang He ,&nbsp;Shihao Li ,&nbsp;Yi Zhang ,&nbsp;Jiahao Gu ,&nbsp;Wen Zhou ,&nbsp;Yanqing Lai ,&nbsp;Zhian Zhang\",\"doi\":\"10.1016/j.ensm.2025.104308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The low-cost iron-based polyanionic Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (NFPP) represent a 3D Na<sup>+</sup> pathways and voltage-advantageous cathode material in sodium-ion batteries. Nevertheless, anisotropic lattice strain and stress generated during sodium (de)intercalation induces prominent local structural changes, deteriorating the long-term stability. Herein, this paper proposes the steric hindrance engineering of Na<sub>2</sub>FeP<sub>2</sub>O<sub>7</sub> phase (NFPO) to restrict the intramolecular motion and stabilize structural evolution in a biphasic structure Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub><img>Na<sub>2</sub>FeP<sub>2</sub>O<sub>7</sub> (NFPP-4.1). The crystal domains of the NFPO phase are interlaced with the NFPP, and the NFPO with minimal volume change can mitigate local structural changes, thereby ensuring robust structural evolution. In addition, theoretical calculations and experiments corroborate that NFPO has abundant Na<sup>+</sup> channels and rapid diffusion kinetics. Consequently, NFPP-4.1 exhibits excellent rate performance (91.4 mAh g<sup>-1</sup>at 10 C) and prolonged cycle duration (capacity retention of 77.8 % after 8000 cycles). The stable structural evolution is underscored by minimal volume change of only 3.59 % observed in the platform region of the sodium storage. This study provides a new insight into the structural evolution of biphasic materials via steric hindrance engineering which can shed light on the development of long-cycle iron-based cathode materials.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"79 \",\"pages\":\"Article 104308\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240582972500306X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240582972500306X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低成本铁基聚阴离子Na4Fe3(PO4)2P2O7 (NFPP)代表了钠离子电池中三维Na+路径和电压优势的正极材料。然而,在钠(脱)插层过程中产生的各向异性晶格应变和应力引起了突出的局部结构变化,恶化了长期稳定性。本文提出了Na2FeP2O7相(NFPO)的空间位阻工程,以限制Na4Fe3(PO4)2P2O7-Na2FeP2O7 (NFPP-4.1)双相结构的分子内运动和稳定结构演化。NFPO相的晶体域与NFPP相互交错,具有最小体积变化的NFPO可以减轻局部结构变化,从而确保稳健的结构演变。此外,理论计算和实验证实了NFPO具有丰富的Na+通道和快速的扩散动力学。因此,NFPP-4.1表现出优异的倍率性能(10c时91.4 mAh g-1)和较长的循环时间(8000次循环后容量保持率为77.8%)。在钠储存的台地区观察到的最小体积变化仅为3.59%,强调了稳定的结构演化。本研究通过位阻工程对双相材料的结构演变提供了新的认识,对长循环铁基正极材料的发展具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steric-hindrance engineering to stabilize structural evolution in biphasic Na4Fe3(PO4)2P2O7Na2FeP2O7 cathode
The low-cost iron-based polyanionic Na4Fe3(PO4)2P2O7 (NFPP) represent a 3D Na+ pathways and voltage-advantageous cathode material in sodium-ion batteries. Nevertheless, anisotropic lattice strain and stress generated during sodium (de)intercalation induces prominent local structural changes, deteriorating the long-term stability. Herein, this paper proposes the steric hindrance engineering of Na2FeP2O7 phase (NFPO) to restrict the intramolecular motion and stabilize structural evolution in a biphasic structure Na4Fe3(PO4)2P2O7Na2FeP2O7 (NFPP-4.1). The crystal domains of the NFPO phase are interlaced with the NFPP, and the NFPO with minimal volume change can mitigate local structural changes, thereby ensuring robust structural evolution. In addition, theoretical calculations and experiments corroborate that NFPO has abundant Na+ channels and rapid diffusion kinetics. Consequently, NFPP-4.1 exhibits excellent rate performance (91.4 mAh g-1at 10 C) and prolonged cycle duration (capacity retention of 77.8 % after 8000 cycles). The stable structural evolution is underscored by minimal volume change of only 3.59 % observed in the platform region of the sodium storage. This study provides a new insight into the structural evolution of biphasic materials via steric hindrance engineering which can shed light on the development of long-cycle iron-based cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信