热过程和二次回收控制着地中海东部和中东城市环境中剧毒多氯萘在大气中的含量

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Minas Iakovides, Somnath Bhowmick, Iasonas Stavroulas, Giannis Iakovides, Michael Pikridas, George Biskos, Nikos Mihalopoulos, Jean Sciare
{"title":"热过程和二次回收控制着地中海东部和中东城市环境中剧毒多氯萘在大气中的含量","authors":"Minas Iakovides, Somnath Bhowmick, Iasonas Stavroulas, Giannis Iakovides, Michael Pikridas, George Biskos, Nikos Mihalopoulos, Jean Sciare","doi":"10.1016/j.jhazmat.2025.138573","DOIUrl":null,"url":null,"abstract":"Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000’s, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\"true\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;SA&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2729.5 1047.3\" width=\"6.339ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-163)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-41\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SA</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SA</mi></mrow></msub></math></script></span>) were significantly correlated to vaporization enthalpies (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\"true\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2309.1 1047.3\" width=\"5.363ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-56\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></script></span>), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\"true\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;SA&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2729.5 1047.3\" width=\"6.339ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-163)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-41\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SA</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SA</mi></mrow></msub></math></script></span> were insignificantly correlated with <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\"true\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2309.1 1047.3\" width=\"5.363ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-56\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></script></span>, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"123 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East\",\"authors\":\"Minas Iakovides, Somnath Bhowmick, Iasonas Stavroulas, Giannis Iakovides, Michael Pikridas, George Biskos, Nikos Mihalopoulos, Jean Sciare\",\"doi\":\"10.1016/j.jhazmat.2025.138573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000’s, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\\\"true\\\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"italic\\\" is=\\\"true\\\"&gt;SA&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2729.5 1047.3\\\" width=\\\"6.339ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-163)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-53\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"613\\\" xlink:href=\\\"#MJMATHI-41\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">SA</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">SA</mi></mrow></msub></math></script></span>) were significantly correlated to vaporization enthalpies (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\\\"true\\\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2309.1 1047.3\\\" width=\\\"5.363ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-56\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></script></span>), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\\\"true\\\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"italic\\\" is=\\\"true\\\"&gt;SA&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2729.5 1047.3\\\" width=\\\"6.339ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-163)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-53\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"613\\\" xlink:href=\\\"#MJMATHI-41\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">SA</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">SA</mi></mrow></msub></math></script></span> were insignificantly correlated with <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x2206;&lt;/mo&gt;&lt;mi is=\\\"true\\\"&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2309.1 1047.3\\\" width=\\\"5.363ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-56\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></script></span>, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138573\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138573","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管自21世纪初以来,传统工业级持久性有机污染物的生产已被禁止,但残留在所有环境隔间中仍然存在,全球范围内仍有无意排放的记录。本研究全面探讨了地中海东部和中东城市环境中几乎没有监测的多氯萘(PCNs)以及多溴联苯醚(PBDEs)在大气中的发生和命运。PCNs和多溴二苯醚(56和12同系物)的气态和颗粒相浓度与更广泛区域的城市地点相当。对于PCNs,分压对环境温度的回归揭示了局部污染表面的二次再循环。地表空气交换焓(∆HSA∆HSA)与蒸发焓(∆HV∆HV)显著相关,证实了短程旋转过程。分子浓度比表明来自热过程的输入,而不能排除来自阿罗克氯污染表面的潜在蒸发。观察到多溴二苯醚的反向模式。回归斜率较浅,表明城市空气有平流流入,而∆HSA∆HSA与∆HV∆HV的相关性不显著,表明与PCNs不同,多溴二苯醚的挥发源不太重要。气体/颗粒分配也通过使用广泛的传统和新型模型进行评估。此外,分别构建了pcn和pbde的温度依赖定量构效关系(QSPR)模型。混合吸附和吸收模型对pcn的预测效果良好,而稳态模型对多溴二苯醚的预测效果更好。这两种QSPR模型都显示出强大的预测能力,可以为全球类似温度范围下的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East

Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East
Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000’s, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (HSA) were significantly correlated to vaporization enthalpies (HV), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas HSA were insignificantly correlated with HV, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信