Minas Iakovides, Somnath Bhowmick, Iasonas Stavroulas, Giannis Iakovides, Michael Pikridas, George Biskos, Nikos Mihalopoulos, Jean Sciare
求助PDF
{"title":"热过程和二次回收控制着地中海东部和中东城市环境中剧毒多氯萘在大气中的含量","authors":"Minas Iakovides, Somnath Bhowmick, Iasonas Stavroulas, Giannis Iakovides, Michael Pikridas, George Biskos, Nikos Mihalopoulos, Jean Sciare","doi":"10.1016/j.jhazmat.2025.138573","DOIUrl":null,"url":null,"abstract":"Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000’s, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">&#x2206;</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SA</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2729.5 1047.3\" width=\"6.339ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-163)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-41\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SA</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SA</mi></mrow></msub></math></script></span>) were significantly correlated to vaporization enthalpies (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">&#x2206;</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2309.1 1047.3\" width=\"5.363ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-56\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></script></span>), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">&#x2206;</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SA</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2729.5 1047.3\" width=\"6.339ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-163)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-53\"></use><use transform=\"scale(0.707)\" x=\"613\" xlink:href=\"#MJMATHI-41\" y=\"0\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">SA</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">SA</mi></mrow></msub></math></script></span> were insignificantly correlated with <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">&#x2206;</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2309.1 1047.3\" width=\"5.363ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><use xlink:href=\"#MJMATHI-48\"></use></g></g><g is=\"true\" transform=\"translate(1665,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-56\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\">H</mi></mrow><mrow is=\"true\"><mi is=\"true\">V</mi></mrow></msub></math></script></span>, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"123 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East\",\"authors\":\"Minas Iakovides, Somnath Bhowmick, Iasonas Stavroulas, Giannis Iakovides, Michael Pikridas, George Biskos, Nikos Mihalopoulos, Jean Sciare\",\"doi\":\"10.1016/j.jhazmat.2025.138573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000’s, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2206;</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">SA</mi></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2729.5 1047.3\\\" width=\\\"6.339ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-163)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-53\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"613\\\" xlink:href=\\\"#MJMATHI-41\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">SA</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">SA</mi></mrow></msub></math></script></span>) were significantly correlated to vaporization enthalpies (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2206;</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2309.1 1047.3\\\" width=\\\"5.363ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-56\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></script></span>), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2206;</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">SA</mi></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2729.5 1047.3\\\" width=\\\"6.339ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-163)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-53\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"613\\\" xlink:href=\\\"#MJMATHI-41\\\" y=\\\"0\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"italic\\\">SA</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi mathvariant=\\\"italic\\\" is=\\\"true\\\">SA</mi></mrow></msub></math></script></span> were insignificantly correlated with <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2206;</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2309.1 1047.3\\\" width=\\\"5.363ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1665,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-56\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∆</mo><mi is=\\\"true\\\">H</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">V</mi></mrow></msub></math></script></span>, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138573\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138573","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East
Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000’s, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (∆ H SA ) were significantly correlated to vaporization enthalpies (∆ H V ), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas ∆ H SA were insignificantly correlated with ∆ H V , suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.