基线[18F]基于FP-CIT pet的深度学习预测左旋多巴诱导的帕金森病运动障碍

IF 6.7 1区 医学 Q1 NEUROSCIENCES
Grace Yoojin Lee, Jongjun Won, Sunwoo Kim, Sungyang Jo, Jihyun Lee, Sangjin Lee, Jae Seung Kim, Changhwan Sung, Jungsu S. Oh, Jihwan Kim, Namkug Kim, Sun Ju Chung
{"title":"基线[18F]基于FP-CIT pet的深度学习预测左旋多巴诱导的帕金森病运动障碍","authors":"Grace Yoojin Lee, Jongjun Won, Sunwoo Kim, Sungyang Jo, Jihyun Lee, Sangjin Lee, Jae Seung Kim, Changhwan Sung, Jungsu S. Oh, Jihwan Kim, Namkug Kim, Sun Ju Chung","doi":"10.1038/s41531-025-00982-5","DOIUrl":null,"url":null,"abstract":"<p>We aimed to develop a convolutional neural network (CNN) model with multi-task learning to predict the onset of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease (PD) using baseline [<sup>18</sup>F]FP-CIT PET images. In this retrospective, single-center study, 402 patients were classified based on whether they developed LID within 5 years after starting levodopa (within 5 years: <i>n</i> = 134; beyond 5 years or none: <i>n</i> = 268). The proposed CNN model achieved a mean AUROC ± SD of 0.666 ± 0.036. Model-derived probabilities were also incorporated into a Cox regression model, yielding a mean concordance index (C-index ± SD) of 0.643 ± 0.046, significantly outperforming the model based on specific/nonspecific binding ratios of striatal subregions (C-index = 0.392 ± 0.036) in four of five test configurations. These results suggest that model-extracted features from [<sup>18</sup>F]FP-CIT PET carry prognostic value for LID, although further performance improvements are needed for clinical application.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"51 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Baseline [18F]FP-CIT PET-based deep learning prediction of levodopa-induced dyskinesia in Parkinson’s disease\",\"authors\":\"Grace Yoojin Lee, Jongjun Won, Sunwoo Kim, Sungyang Jo, Jihyun Lee, Sangjin Lee, Jae Seung Kim, Changhwan Sung, Jungsu S. Oh, Jihwan Kim, Namkug Kim, Sun Ju Chung\",\"doi\":\"10.1038/s41531-025-00982-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We aimed to develop a convolutional neural network (CNN) model with multi-task learning to predict the onset of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease (PD) using baseline [<sup>18</sup>F]FP-CIT PET images. In this retrospective, single-center study, 402 patients were classified based on whether they developed LID within 5 years after starting levodopa (within 5 years: <i>n</i> = 134; beyond 5 years or none: <i>n</i> = 268). The proposed CNN model achieved a mean AUROC ± SD of 0.666 ± 0.036. Model-derived probabilities were also incorporated into a Cox regression model, yielding a mean concordance index (C-index ± SD) of 0.643 ± 0.046, significantly outperforming the model based on specific/nonspecific binding ratios of striatal subregions (C-index = 0.392 ± 0.036) in four of five test configurations. These results suggest that model-extracted features from [<sup>18</sup>F]FP-CIT PET carry prognostic value for LID, although further performance improvements are needed for clinical application.</p>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-025-00982-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00982-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是建立一个具有多任务学习的卷积神经网络(CNN)模型,利用基线[18F]FP-CIT PET图像预测帕金森病(PD)患者左旋多巴诱导的运动障碍(LID)的发作。在这项回顾性的单中心研究中,402例患者根据他们在开始左旋多巴后5年内是否发生LID进行分类(5年内:n = 134;超过5年或没有:n = 268)。该CNN模型的平均AUROC±SD为0.666±0.036。模型推导的概率也被纳入Cox回归模型,得到的平均一致性指数(C-index±SD)为0.643±0.046,在五种测试配置中的四种情况下,显著优于基于纹状体亚区特异性/非特异性结合比的模型(C-index = 0.392±0.036)。这些结果表明,从[18F]FP-CIT PET中提取的模型特征对LID具有预后价值,尽管临床应用需要进一步的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Baseline [18F]FP-CIT PET-based deep learning prediction of levodopa-induced dyskinesia in Parkinson’s disease

Baseline [18F]FP-CIT PET-based deep learning prediction of levodopa-induced dyskinesia in Parkinson’s disease

We aimed to develop a convolutional neural network (CNN) model with multi-task learning to predict the onset of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease (PD) using baseline [18F]FP-CIT PET images. In this retrospective, single-center study, 402 patients were classified based on whether they developed LID within 5 years after starting levodopa (within 5 years: n = 134; beyond 5 years or none: n = 268). The proposed CNN model achieved a mean AUROC ± SD of 0.666 ± 0.036. Model-derived probabilities were also incorporated into a Cox regression model, yielding a mean concordance index (C-index ± SD) of 0.643 ± 0.046, significantly outperforming the model based on specific/nonspecific binding ratios of striatal subregions (C-index = 0.392 ± 0.036) in four of five test configurations. These results suggest that model-extracted features from [18F]FP-CIT PET carry prognostic value for LID, although further performance improvements are needed for clinical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信