高性能镁离子电池的溶剂化结构调控与亲镁界面的构建

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xinyue Li, Qiannan Jin, Liwen Hu, Yang Song, Xuewei Lv, Xianhua Chen, Shuqiang Jiao, Fusheng Pan
{"title":"高性能镁离子电池的溶剂化结构调控与亲镁界面的构建","authors":"Xinyue Li, Qiannan Jin, Liwen Hu, Yang Song, Xuewei Lv, Xianhua Chen, Shuqiang Jiao, Fusheng Pan","doi":"10.1002/adfm.202505973","DOIUrl":null,"url":null,"abstract":"Aqueous rechargeable magnesium ion batteries promise high energy density and safety but suffer from low cycling stability and poor reversibility, primarily due to side reactions and passivation resulting from the decomposition of free water. Here, the study proposes a novel electrolyte composed of cost‐effective MgCl<jats:sub>2</jats:sub>∙6H<jats:sub>2</jats:sub>O and a strong polar aprotic solvent (N,N‐dimethylformamide, DMF). The stronger interaction between Mg<jats:sup>2+</jats:sup> and electronegative carbonyl oxygen in DMF induces the transformation of solvation structure from original [Mg(H<jats:sub>2</jats:sub>O)<jats:sub>6</jats:sub>]<jats:sup>2+</jats:sup> to [Mg(H<jats:sub>2</jats:sub>O)<jats:sub>2</jats:sub>(DMF)<jats:sub>3</jats:sub>Cl]<jats:sup>+</jats:sup>, thus decreasing the coordination number of Mg<jats:sup>2+</jats:sup>‐H<jats:sub>2</jats:sub>O from 5.7 to 1.571 and appropriately introducing Cl<jats:sup>−</jats:sup> to inhibit hydrogen evolution reactions (HER)/corrosion and regulate passivation layers. Furthermore, the construction of magnesiumophilic interface with a high HER over‐potential not only further suppresses the reactivity of active water but also realizes a stable under‐potential deposition (UPD) of Mg on the Zn substrate. Consequently, the symmetric cells with Zn substrate utilizing the MgCl<jats:sub>2</jats:sub>∙6H<jats:sub>2</jats:sub>O‐DMF electrolyte can consistently cycle for over 5200 h with a low over‐potential of 80 mV at a current density of 0.2 mA·cm<jats:sup>−2</jats:sup>, and the corresponding full cells exhibit a high discharge voltage that is 0.98 V higher than that of conventional aqueous systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"28 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvation Structure Regulation Coupled with Construction of Magnesiumophilic Interface for High‐Performance Mg‐Ion Batteries\",\"authors\":\"Xinyue Li, Qiannan Jin, Liwen Hu, Yang Song, Xuewei Lv, Xianhua Chen, Shuqiang Jiao, Fusheng Pan\",\"doi\":\"10.1002/adfm.202505973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous rechargeable magnesium ion batteries promise high energy density and safety but suffer from low cycling stability and poor reversibility, primarily due to side reactions and passivation resulting from the decomposition of free water. Here, the study proposes a novel electrolyte composed of cost‐effective MgCl<jats:sub>2</jats:sub>∙6H<jats:sub>2</jats:sub>O and a strong polar aprotic solvent (N,N‐dimethylformamide, DMF). The stronger interaction between Mg<jats:sup>2+</jats:sup> and electronegative carbonyl oxygen in DMF induces the transformation of solvation structure from original [Mg(H<jats:sub>2</jats:sub>O)<jats:sub>6</jats:sub>]<jats:sup>2+</jats:sup> to [Mg(H<jats:sub>2</jats:sub>O)<jats:sub>2</jats:sub>(DMF)<jats:sub>3</jats:sub>Cl]<jats:sup>+</jats:sup>, thus decreasing the coordination number of Mg<jats:sup>2+</jats:sup>‐H<jats:sub>2</jats:sub>O from 5.7 to 1.571 and appropriately introducing Cl<jats:sup>−</jats:sup> to inhibit hydrogen evolution reactions (HER)/corrosion and regulate passivation layers. Furthermore, the construction of magnesiumophilic interface with a high HER over‐potential not only further suppresses the reactivity of active water but also realizes a stable under‐potential deposition (UPD) of Mg on the Zn substrate. Consequently, the symmetric cells with Zn substrate utilizing the MgCl<jats:sub>2</jats:sub>∙6H<jats:sub>2</jats:sub>O‐DMF electrolyte can consistently cycle for over 5200 h with a low over‐potential of 80 mV at a current density of 0.2 mA·cm<jats:sup>−2</jats:sup>, and the corresponding full cells exhibit a high discharge voltage that is 0.98 V higher than that of conventional aqueous systems.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202505973\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202505973","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水可充电镁离子电池具有高能量密度和安全性,但循环稳定性低,可逆性差,主要是由于游离水分解引起的副反应和钝化。本研究提出了一种新型电解质,由具有成本效益的MgCl2∙6H2O和强极性非质子溶剂(N,N -二甲基甲酰胺,DMF)组成。DMF中Mg2+与电负性羰基氧之间较强的相互作用导致溶剂化结构由原来的[Mg(H2O)6]2+转变为[Mg(H2O)2(DMF)3Cl]+,从而使Mg2+‐H2O的配位数从5.7降低到1.571,并适当引入Cl−抑制析氢反应(HER)/腐蚀和调节钝化层。此外,高HER过电位亲镁界面的构建不仅进一步抑制了活性水的反应性,而且实现了Mg在Zn基体上稳定的欠电位沉积(UPD)。因此,使用MgCl2∙6H2O‐DMF电解液的锌衬底对称电池可以在0.2 mA·cm−2的电流密度下以80 mV的低过电位持续循环5200 h以上,并且相应的完整电池具有比传统水系统高0.98 V的高放电电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvation Structure Regulation Coupled with Construction of Magnesiumophilic Interface for High‐Performance Mg‐Ion Batteries
Aqueous rechargeable magnesium ion batteries promise high energy density and safety but suffer from low cycling stability and poor reversibility, primarily due to side reactions and passivation resulting from the decomposition of free water. Here, the study proposes a novel electrolyte composed of cost‐effective MgCl2∙6H2O and a strong polar aprotic solvent (N,N‐dimethylformamide, DMF). The stronger interaction between Mg2+ and electronegative carbonyl oxygen in DMF induces the transformation of solvation structure from original [Mg(H2O)6]2+ to [Mg(H2O)2(DMF)3Cl]+, thus decreasing the coordination number of Mg2+‐H2O from 5.7 to 1.571 and appropriately introducing Cl to inhibit hydrogen evolution reactions (HER)/corrosion and regulate passivation layers. Furthermore, the construction of magnesiumophilic interface with a high HER over‐potential not only further suppresses the reactivity of active water but also realizes a stable under‐potential deposition (UPD) of Mg on the Zn substrate. Consequently, the symmetric cells with Zn substrate utilizing the MgCl2∙6H2O‐DMF electrolyte can consistently cycle for over 5200 h with a low over‐potential of 80 mV at a current density of 0.2 mA·cm−2, and the corresponding full cells exhibit a high discharge voltage that is 0.98 V higher than that of conventional aqueous systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信