人工智能辅助下高熵析氢反应催化剂的超快高通量筛选

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ziqi Fu, Pengfei Huang, Xiaoyang Wang, Wei-Di Liu, Lingchang Kong, Kang Chen, Jinyang Li, Yanan Chen
{"title":"人工智能辅助下高熵析氢反应催化剂的超快高通量筛选","authors":"Ziqi Fu, Pengfei Huang, Xiaoyang Wang, Wei-Di Liu, Lingchang Kong, Kang Chen, Jinyang Li, Yanan Chen","doi":"10.1002/aenm.202500744","DOIUrl":null,"url":null,"abstract":"The development of high-entropy alloy (HEA) catalysts is hindered by the “combinatorial explosion” challenge inherent to their complex component design. This study presents an artificial intelligence-assisted high-throughput framework that synergizes large language models (LLMs) for literature mining and genetic algorithms (GAs) for iterative optimization to overcome this challenge. Here, LLMs analyzed 14 242 publications to identify 10 critical hydrogen evolution reaction (HER)-active elements (Fe, Co, Ni, Pt, etc.), narrowing the candidate pool to 126 Pt-based HEA combinations. GA-driven experiment optimizes this subset via ultrafast high-throughput material synthesis and screening using ultrafast high-temperature thermal shock technology, achieving convergence in 4 iterations (24 samples) for 60% reduction of the versus conventional GA approaches. The optimal IrCuNiPdPt/C catalyst exhibits the record-low HER overpotentials of 25.5 and 119 mV at 10 and 100 mA cm⁻<sup>2</sup>, surpassing commercial Pt/C by 49% and 18%, respectively, which demonstrates 300-h stability with negligible decay. This work establishes a paradigm-shifting strategy bridging computational intelligence and autonomous experiment, that slashes the discovery time from millennia to hours, enabling rational design of multi-component catalysts for sustainable energy applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"124 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Assisted Ultrafast High-Throughput Screening of High-Entropy Hydrogen Evolution Reaction Catalysts\",\"authors\":\"Ziqi Fu, Pengfei Huang, Xiaoyang Wang, Wei-Di Liu, Lingchang Kong, Kang Chen, Jinyang Li, Yanan Chen\",\"doi\":\"10.1002/aenm.202500744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high-entropy alloy (HEA) catalysts is hindered by the “combinatorial explosion” challenge inherent to their complex component design. This study presents an artificial intelligence-assisted high-throughput framework that synergizes large language models (LLMs) for literature mining and genetic algorithms (GAs) for iterative optimization to overcome this challenge. Here, LLMs analyzed 14 242 publications to identify 10 critical hydrogen evolution reaction (HER)-active elements (Fe, Co, Ni, Pt, etc.), narrowing the candidate pool to 126 Pt-based HEA combinations. GA-driven experiment optimizes this subset via ultrafast high-throughput material synthesis and screening using ultrafast high-temperature thermal shock technology, achieving convergence in 4 iterations (24 samples) for 60% reduction of the versus conventional GA approaches. The optimal IrCuNiPdPt/C catalyst exhibits the record-low HER overpotentials of 25.5 and 119 mV at 10 and 100 mA cm⁻<sup>2</sup>, surpassing commercial Pt/C by 49% and 18%, respectively, which demonstrates 300-h stability with negligible decay. This work establishes a paradigm-shifting strategy bridging computational intelligence and autonomous experiment, that slashes the discovery time from millennia to hours, enabling rational design of multi-component catalysts for sustainable energy applications.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202500744\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500744","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEA)催化剂的发展受到其复杂部件设计固有的“组合爆炸”挑战的阻碍。本研究提出了一种人工智能辅助的高通量框架,该框架将用于文献挖掘的大型语言模型(llm)和用于迭代优化的遗传算法(GAs)协同起来,以克服这一挑战。在这里,LLMs分析了14242份出版物,确定了10种关键析氢反应(HER)活性元素(Fe, Co, Ni, Pt等),将候选池缩小到126种基于Pt的HEA组合。GA驱动的实验通过超快高通量材料合成和超快高温热冲击技术筛选来优化这一子集,实现了4次迭代(24个样本)的收敛,与传统的GA方法相比减少了60%。最佳的ircunippt /C催化剂在10和100 mA cm - 2时的HER过电位分别为25.5和119 mV,比商用Pt/C分别高出49%和18%,具有300 h的稳定性,衰变可以忽略。这项工作建立了一种范式转换策略,将计算智能和自主实验连接起来,将发现时间从几千年缩短到几个小时,从而能够合理设计用于可持续能源应用的多组分催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Intelligence-Assisted Ultrafast High-Throughput Screening of High-Entropy Hydrogen Evolution Reaction Catalysts

Artificial Intelligence-Assisted Ultrafast High-Throughput Screening of High-Entropy Hydrogen Evolution Reaction Catalysts
The development of high-entropy alloy (HEA) catalysts is hindered by the “combinatorial explosion” challenge inherent to their complex component design. This study presents an artificial intelligence-assisted high-throughput framework that synergizes large language models (LLMs) for literature mining and genetic algorithms (GAs) for iterative optimization to overcome this challenge. Here, LLMs analyzed 14 242 publications to identify 10 critical hydrogen evolution reaction (HER)-active elements (Fe, Co, Ni, Pt, etc.), narrowing the candidate pool to 126 Pt-based HEA combinations. GA-driven experiment optimizes this subset via ultrafast high-throughput material synthesis and screening using ultrafast high-temperature thermal shock technology, achieving convergence in 4 iterations (24 samples) for 60% reduction of the versus conventional GA approaches. The optimal IrCuNiPdPt/C catalyst exhibits the record-low HER overpotentials of 25.5 and 119 mV at 10 and 100 mA cm⁻2, surpassing commercial Pt/C by 49% and 18%, respectively, which demonstrates 300-h stability with negligible decay. This work establishes a paradigm-shifting strategy bridging computational intelligence and autonomous experiment, that slashes the discovery time from millennia to hours, enabling rational design of multi-component catalysts for sustainable energy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信