Golnaz Atri Roozbahani, Mehdi Heidari Horestani, Katrin Schindler, Julia Kallenbach, Aria Baniahmad
{"title":"在去势抵抗性前列腺癌中,雄激素受体激动剂或拮抗剂通过两种新的常见DYRK1A-DREAM和cyclin G2信号通路介导细胞衰老","authors":"Golnaz Atri Roozbahani, Mehdi Heidari Horestani, Katrin Schindler, Julia Kallenbach, Aria Baniahmad","doi":"10.1016/j.jare.2025.05.019","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Castration-resistant prostate cancer (CRPC) is a deadly disease that in addition to being resistant to androgen deprivation often exhibits also resistant to androgen receptor (AR)-antagonists. Supraphysiological androgen levels (SAL) are used in the bipolar androgen therapy in clinical phase trials to inhibit CRPC.<h3>Methods</h3>Co-immunoprecipitation, immunofluorescence, growth and cell senescence assays, mouse xenografted CRPC, AR target gene analyses of organs, analyses of RNA-seq, ChIP-seq and patient-derived xenografts, qRT-PCR, 3D tumor spheroids, knockdown experiments.<h3>Results</h3>Both AR-antagonists and –agonist at SAL induce cellular senescence despite acting oppositely on AR transcriptional activity. Here, we identified two common growth inhibitory pathways induced by SAL and AR-antagonists. Using the novel AR-antagonist compound 28 (C28), that inhibits also those AR mutants mediating therapy resistance, represses growth including CRPC tumor spheroids and mouse xenografted tumors. Mechanistically, C28 reduces phosphorylation of AR at serine 81 and HSP27 required for AR transcriptional activity and enhances AR-p130 interaction. Notably, increased p130 levels were also detected by SAL treatment leading to activation of DREAM complex signaling and induction of cellular senescence indicating that both AR-agonist and –antagonist use the same pathway for growth repression. Inhibition of DYRK1A, a key kinase to activate DREAM complex, blocks C28- and SAL-induced cellular senescence. Both C28 and SAL also induces the atypical cyclin G2 (<em>CCNG2</em>), which also mediates cellular senescence. Induction of <em>CCNG2</em> is confirmed in CRPC tumor spheroids and xenograft tumors of treated mice. The second-generation AR-antagonist Darolutamide (Dar) also activates DREAM complex and <em>CCNG2</em>.<h3>Conclusion</h3>Taken together, these findings suggests the identification of two common pathways induced by AR-antagonists and SAL, used in bipolar androgen therapy, to mediate growth inhibition and induction of cellular senescence in CRPC.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"130 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of cellular senescence by androgen receptor agonist or antagonist is mediated via two novel common DYRK1A-DREAM and cyclin G2 signaling pathways in castration-resistant prostate cancer\",\"authors\":\"Golnaz Atri Roozbahani, Mehdi Heidari Horestani, Katrin Schindler, Julia Kallenbach, Aria Baniahmad\",\"doi\":\"10.1016/j.jare.2025.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Background</h3>Castration-resistant prostate cancer (CRPC) is a deadly disease that in addition to being resistant to androgen deprivation often exhibits also resistant to androgen receptor (AR)-antagonists. Supraphysiological androgen levels (SAL) are used in the bipolar androgen therapy in clinical phase trials to inhibit CRPC.<h3>Methods</h3>Co-immunoprecipitation, immunofluorescence, growth and cell senescence assays, mouse xenografted CRPC, AR target gene analyses of organs, analyses of RNA-seq, ChIP-seq and patient-derived xenografts, qRT-PCR, 3D tumor spheroids, knockdown experiments.<h3>Results</h3>Both AR-antagonists and –agonist at SAL induce cellular senescence despite acting oppositely on AR transcriptional activity. Here, we identified two common growth inhibitory pathways induced by SAL and AR-antagonists. Using the novel AR-antagonist compound 28 (C28), that inhibits also those AR mutants mediating therapy resistance, represses growth including CRPC tumor spheroids and mouse xenografted tumors. Mechanistically, C28 reduces phosphorylation of AR at serine 81 and HSP27 required for AR transcriptional activity and enhances AR-p130 interaction. Notably, increased p130 levels were also detected by SAL treatment leading to activation of DREAM complex signaling and induction of cellular senescence indicating that both AR-agonist and –antagonist use the same pathway for growth repression. Inhibition of DYRK1A, a key kinase to activate DREAM complex, blocks C28- and SAL-induced cellular senescence. Both C28 and SAL also induces the atypical cyclin G2 (<em>CCNG2</em>), which also mediates cellular senescence. Induction of <em>CCNG2</em> is confirmed in CRPC tumor spheroids and xenograft tumors of treated mice. The second-generation AR-antagonist Darolutamide (Dar) also activates DREAM complex and <em>CCNG2</em>.<h3>Conclusion</h3>Taken together, these findings suggests the identification of two common pathways induced by AR-antagonists and SAL, used in bipolar androgen therapy, to mediate growth inhibition and induction of cellular senescence in CRPC.\",\"PeriodicalId\":14952,\"journal\":{\"name\":\"Journal of Advanced Research\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2025.05.019\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.05.019","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Induction of cellular senescence by androgen receptor agonist or antagonist is mediated via two novel common DYRK1A-DREAM and cyclin G2 signaling pathways in castration-resistant prostate cancer
Background
Castration-resistant prostate cancer (CRPC) is a deadly disease that in addition to being resistant to androgen deprivation often exhibits also resistant to androgen receptor (AR)-antagonists. Supraphysiological androgen levels (SAL) are used in the bipolar androgen therapy in clinical phase trials to inhibit CRPC.
Methods
Co-immunoprecipitation, immunofluorescence, growth and cell senescence assays, mouse xenografted CRPC, AR target gene analyses of organs, analyses of RNA-seq, ChIP-seq and patient-derived xenografts, qRT-PCR, 3D tumor spheroids, knockdown experiments.
Results
Both AR-antagonists and –agonist at SAL induce cellular senescence despite acting oppositely on AR transcriptional activity. Here, we identified two common growth inhibitory pathways induced by SAL and AR-antagonists. Using the novel AR-antagonist compound 28 (C28), that inhibits also those AR mutants mediating therapy resistance, represses growth including CRPC tumor spheroids and mouse xenografted tumors. Mechanistically, C28 reduces phosphorylation of AR at serine 81 and HSP27 required for AR transcriptional activity and enhances AR-p130 interaction. Notably, increased p130 levels were also detected by SAL treatment leading to activation of DREAM complex signaling and induction of cellular senescence indicating that both AR-agonist and –antagonist use the same pathway for growth repression. Inhibition of DYRK1A, a key kinase to activate DREAM complex, blocks C28- and SAL-induced cellular senescence. Both C28 and SAL also induces the atypical cyclin G2 (CCNG2), which also mediates cellular senescence. Induction of CCNG2 is confirmed in CRPC tumor spheroids and xenograft tumors of treated mice. The second-generation AR-antagonist Darolutamide (Dar) also activates DREAM complex and CCNG2.
Conclusion
Taken together, these findings suggests the identification of two common pathways induced by AR-antagonists and SAL, used in bipolar androgen therapy, to mediate growth inhibition and induction of cellular senescence in CRPC.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.