Anika Tabassum Promi, Junyi Yao, Dawei Xia, Callum Connor, Afolabi Uthmon Olayiwola, Jianming Bai, Chengjun Sun, Dennis Nordlund, Kejie Zhao and Feng Lin
{"title":"研究了o3型钠离子层状氧化物阴极材料在高温合成过程中的相变和晶粒生长行为","authors":"Anika Tabassum Promi, Junyi Yao, Dawei Xia, Callum Connor, Afolabi Uthmon Olayiwola, Jianming Bai, Chengjun Sun, Dennis Nordlund, Kejie Zhao and Feng Lin","doi":"10.1039/D5TA00844A","DOIUrl":null,"url":null,"abstract":"<p >Understanding the formation mechanism of layered oxide cathodes <em>via</em> solid-state synthesis is imperative to achieving controllability over their materials properties and electrochemical behaviors. In this work, we investigate the phase and microstructure evolution during the synthesis of NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small>, a model sodium-ion layered oxide cathode, using a combination of imaging, diffraction, and spectroscopic techniques. We unravel the synthetic mechanistic pathways involved in the high-temperature calcination reaction, as well as elaborate the synthesis-microstructure-performance relationship of this material. The formation of the final layered oxide phase involves a gradual transformation through a sodiated oxyhydroxide intermediate. During the reaction, the precursor dehydration reaction dominates at 250–550 °C, while the major sodiation reaction occurs at 550–850 °C. Alongside multiple stages of phase transformations, the final grain structure formation occurs through the continuous growth of the (003) and (104) facets. During the reaction, Mn acts as the charge-compensating element and exhibits depth-dependent characteristics. When the sodiation reaction dominates over dehydration, the reaction intermediates undergo gradual electronic structure changes with increasing temperature, as indicated by the spectral features of TM3d-O2p hybrid states. Calcination duration is also a critical parameter governing the microstructure, surface reactivity, phase fraction distribution and electrochemical performance of the material. The optimal calcination duration was determined to be 18 hours at 850 °C under the conditions evaluated here. Calcination beyond this duration was found to be detrimental to electrochemical performance due to Na and O loss and heterogeneous sodium distribution throughout the particles. Our work sheds light on the complex crystallographic-chemical-microstructural evolution of sodium ion layered oxide cathodes and provides insight into precisely tuning material properties which are intimately linked to battery performances.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 22","pages":" 17063-17074"},"PeriodicalIF":9.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta00844a?page=search","citationCount":"0","resultStr":"{\"title\":\"Elucidating the phase transformations and grain growth behavior of O3-type sodium-ion layered oxide cathode materials during high temperature synthesis†\",\"authors\":\"Anika Tabassum Promi, Junyi Yao, Dawei Xia, Callum Connor, Afolabi Uthmon Olayiwola, Jianming Bai, Chengjun Sun, Dennis Nordlund, Kejie Zhao and Feng Lin\",\"doi\":\"10.1039/D5TA00844A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the formation mechanism of layered oxide cathodes <em>via</em> solid-state synthesis is imperative to achieving controllability over their materials properties and electrochemical behaviors. In this work, we investigate the phase and microstructure evolution during the synthesis of NaNi<small><sub>1/3</sub></small>Fe<small><sub>1/3</sub></small>Mn<small><sub>1/3</sub></small>O<small><sub>2</sub></small>, a model sodium-ion layered oxide cathode, using a combination of imaging, diffraction, and spectroscopic techniques. We unravel the synthetic mechanistic pathways involved in the high-temperature calcination reaction, as well as elaborate the synthesis-microstructure-performance relationship of this material. The formation of the final layered oxide phase involves a gradual transformation through a sodiated oxyhydroxide intermediate. During the reaction, the precursor dehydration reaction dominates at 250–550 °C, while the major sodiation reaction occurs at 550–850 °C. Alongside multiple stages of phase transformations, the final grain structure formation occurs through the continuous growth of the (003) and (104) facets. During the reaction, Mn acts as the charge-compensating element and exhibits depth-dependent characteristics. When the sodiation reaction dominates over dehydration, the reaction intermediates undergo gradual electronic structure changes with increasing temperature, as indicated by the spectral features of TM3d-O2p hybrid states. Calcination duration is also a critical parameter governing the microstructure, surface reactivity, phase fraction distribution and electrochemical performance of the material. The optimal calcination duration was determined to be 18 hours at 850 °C under the conditions evaluated here. Calcination beyond this duration was found to be detrimental to electrochemical performance due to Na and O loss and heterogeneous sodium distribution throughout the particles. Our work sheds light on the complex crystallographic-chemical-microstructural evolution of sodium ion layered oxide cathodes and provides insight into precisely tuning material properties which are intimately linked to battery performances.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 22\",\"pages\":\" 17063-17074\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta00844a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta00844a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta00844a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Elucidating the phase transformations and grain growth behavior of O3-type sodium-ion layered oxide cathode materials during high temperature synthesis†
Understanding the formation mechanism of layered oxide cathodes via solid-state synthesis is imperative to achieving controllability over their materials properties and electrochemical behaviors. In this work, we investigate the phase and microstructure evolution during the synthesis of NaNi1/3Fe1/3Mn1/3O2, a model sodium-ion layered oxide cathode, using a combination of imaging, diffraction, and spectroscopic techniques. We unravel the synthetic mechanistic pathways involved in the high-temperature calcination reaction, as well as elaborate the synthesis-microstructure-performance relationship of this material. The formation of the final layered oxide phase involves a gradual transformation through a sodiated oxyhydroxide intermediate. During the reaction, the precursor dehydration reaction dominates at 250–550 °C, while the major sodiation reaction occurs at 550–850 °C. Alongside multiple stages of phase transformations, the final grain structure formation occurs through the continuous growth of the (003) and (104) facets. During the reaction, Mn acts as the charge-compensating element and exhibits depth-dependent characteristics. When the sodiation reaction dominates over dehydration, the reaction intermediates undergo gradual electronic structure changes with increasing temperature, as indicated by the spectral features of TM3d-O2p hybrid states. Calcination duration is also a critical parameter governing the microstructure, surface reactivity, phase fraction distribution and electrochemical performance of the material. The optimal calcination duration was determined to be 18 hours at 850 °C under the conditions evaluated here. Calcination beyond this duration was found to be detrimental to electrochemical performance due to Na and O loss and heterogeneous sodium distribution throughout the particles. Our work sheds light on the complex crystallographic-chemical-microstructural evolution of sodium ion layered oxide cathodes and provides insight into precisely tuning material properties which are intimately linked to battery performances.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.