利用文本引导生成式人工智能探索晶体化学空间

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hyunsoo Park, Anthony Onwuli, Aron Walsh
{"title":"利用文本引导生成式人工智能探索晶体化学空间","authors":"Hyunsoo Park, Anthony Onwuli, Aron Walsh","doi":"10.1038/s41467-025-59636-y","DOIUrl":null,"url":null,"abstract":"<p>The vastness of chemical space presents a long-standing challenge for the exploration of new compounds with pre-determined properties. In materials science, crystal structure prediction has become a mature tool for mapping from composition to structure based on global optimisation techniques. Generative artificial intelligence now offers the means to efficiently navigate larger regions of crystal chemical space informed by structure-property datasets of materials. Here, we introduce a model, named Chemeleon, designed to generate chemical compositions and crystal structures by learning from both textual descriptions and three-dimensional structural data. The model employs denoising diffusion techniques for compound generation using textual inputs aligned with structural data via cross-modal contrastive learning. The potential of this approach is demonstrated for multi-component compound generation, including the Zn-Ti-O ternary space, and the prediction of stable phases in the Li-P-S-Cl quaternary space of relevance to solid-state batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"32 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of crystal chemical space using text-guided generative artificial intelligence\",\"authors\":\"Hyunsoo Park, Anthony Onwuli, Aron Walsh\",\"doi\":\"10.1038/s41467-025-59636-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vastness of chemical space presents a long-standing challenge for the exploration of new compounds with pre-determined properties. In materials science, crystal structure prediction has become a mature tool for mapping from composition to structure based on global optimisation techniques. Generative artificial intelligence now offers the means to efficiently navigate larger regions of crystal chemical space informed by structure-property datasets of materials. Here, we introduce a model, named Chemeleon, designed to generate chemical compositions and crystal structures by learning from both textual descriptions and three-dimensional structural data. The model employs denoising diffusion techniques for compound generation using textual inputs aligned with structural data via cross-modal contrastive learning. The potential of this approach is demonstrated for multi-component compound generation, including the Zn-Ti-O ternary space, and the prediction of stable phases in the Li-P-S-Cl quaternary space of relevance to solid-state batteries.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59636-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59636-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

广阔的化学空间为探索具有预定性质的新化合物提出了一个长期的挑战。在材料科学中,基于全局优化技术的晶体结构预测已经成为一种成熟的从成分到结构映射的工具。生成式人工智能现在提供了有效导航更大区域的晶体化学空间的方法,这些区域由材料的结构-属性数据集提供信息。在这里,我们介绍了一个名为Chemeleon的模型,旨在通过学习文本描述和三维结构数据来生成化学成分和晶体结构。该模型采用去噪扩散技术,通过跨模态对比学习,使用与结构数据对齐的文本输入生成复合词。这种方法的潜力被证明是多组分化合物的生成,包括Zn-Ti-O三元空间,以及与固态电池相关的Li-P-S-Cl四元空间中稳定相的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploration of crystal chemical space using text-guided generative artificial intelligence

Exploration of crystal chemical space using text-guided generative artificial intelligence

The vastness of chemical space presents a long-standing challenge for the exploration of new compounds with pre-determined properties. In materials science, crystal structure prediction has become a mature tool for mapping from composition to structure based on global optimisation techniques. Generative artificial intelligence now offers the means to efficiently navigate larger regions of crystal chemical space informed by structure-property datasets of materials. Here, we introduce a model, named Chemeleon, designed to generate chemical compositions and crystal structures by learning from both textual descriptions and three-dimensional structural data. The model employs denoising diffusion techniques for compound generation using textual inputs aligned with structural data via cross-modal contrastive learning. The potential of this approach is demonstrated for multi-component compound generation, including the Zn-Ti-O ternary space, and the prediction of stable phases in the Li-P-S-Cl quaternary space of relevance to solid-state batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信