具有增强机械性能的微米级聚乙二醇

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Letian Zheng, Heyi Liang, Jin Tang, Qiang Zheng, Fang Chen, Lian Wang, Qi Li
{"title":"具有增强机械性能的微米级聚乙二醇","authors":"Letian Zheng, Heyi Liang, Jin Tang, Qiang Zheng, Fang Chen, Lian Wang, Qi Li","doi":"10.1038/s41467-025-59742-x","DOIUrl":null,"url":null,"abstract":"<p>Strong and lightweight materials are highly desired. Here we report the emergence of a compressive strength exceeding 2 GPa in a directly printed poly(ethylene glycol) micropillar. This strong and highly crosslinked micropillar is not brittle, instead, it behaves like rubber under compression. Experimental results show that the micropillar sustains a strain approaching 70%, absorbs energy up to 310 MJ/m<sup>3</sup>, and displays an almost 100% recovery after cyclic loading. Simple micro-lattices (e.g., honeycombs) of poly(ethylene glycol) also display high strength at low structural densities. By combining a series of control experiments, computational simulations and in situ characterization, we find that the key to achieving such mechanical performance lies in the fabrication of a highly homogeneous structure with suppressed defect formation. Our discovery unveils a generalizable approach for achieving a performance leap in polymeric materials and provides a complementary approach to enhance the mechanical performance of low-density latticed structures.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"96 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micrometer-scale poly(ethylene glycol) with enhanced mechanical performance\",\"authors\":\"Letian Zheng, Heyi Liang, Jin Tang, Qiang Zheng, Fang Chen, Lian Wang, Qi Li\",\"doi\":\"10.1038/s41467-025-59742-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strong and lightweight materials are highly desired. Here we report the emergence of a compressive strength exceeding 2 GPa in a directly printed poly(ethylene glycol) micropillar. This strong and highly crosslinked micropillar is not brittle, instead, it behaves like rubber under compression. Experimental results show that the micropillar sustains a strain approaching 70%, absorbs energy up to 310 MJ/m<sup>3</sup>, and displays an almost 100% recovery after cyclic loading. Simple micro-lattices (e.g., honeycombs) of poly(ethylene glycol) also display high strength at low structural densities. By combining a series of control experiments, computational simulations and in situ characterization, we find that the key to achieving such mechanical performance lies in the fabrication of a highly homogeneous structure with suppressed defect formation. Our discovery unveils a generalizable approach for achieving a performance leap in polymeric materials and provides a complementary approach to enhance the mechanical performance of low-density latticed structures.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59742-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59742-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

坚固和轻便的材料是非常需要的。在这里,我们报告了在直接印刷的聚乙二醇微柱中出现了超过2 GPa的抗压强度。这种强而高交联的微柱不脆,相反,它在压缩下表现得像橡胶。实验结果表明,微柱承受的应变接近70%,吸收的能量高达310 MJ/m3,循环加载后恢复接近100%。聚乙二醇的简单微晶格(如蜂窝)在低结构密度下也显示出高强度。通过一系列的控制实验、计算模拟和原位表征,我们发现实现这种力学性能的关键在于制造高度均匀的结构和抑制缺陷的形成。我们的发现揭示了实现聚合物材料性能飞跃的一种可推广的方法,并提供了一种增强低密度晶格结构机械性能的补充方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micrometer-scale poly(ethylene glycol) with enhanced mechanical performance

Micrometer-scale poly(ethylene glycol) with enhanced mechanical performance

Strong and lightweight materials are highly desired. Here we report the emergence of a compressive strength exceeding 2 GPa in a directly printed poly(ethylene glycol) micropillar. This strong and highly crosslinked micropillar is not brittle, instead, it behaves like rubber under compression. Experimental results show that the micropillar sustains a strain approaching 70%, absorbs energy up to 310 MJ/m3, and displays an almost 100% recovery after cyclic loading. Simple micro-lattices (e.g., honeycombs) of poly(ethylene glycol) also display high strength at low structural densities. By combining a series of control experiments, computational simulations and in situ characterization, we find that the key to achieving such mechanical performance lies in the fabrication of a highly homogeneous structure with suppressed defect formation. Our discovery unveils a generalizable approach for achieving a performance leap in polymeric materials and provides a complementary approach to enhance the mechanical performance of low-density latticed structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信