Xiang Zhang, Dan Zhang, Zaiwei Wang, Yixin Zhao, Hao Chen
{"title":"全无机含锡钙钛矿太阳能电池:一种新兴的环保光伏技术。","authors":"Xiang Zhang, Dan Zhang, Zaiwei Wang, Yixin Zhao, Hao Chen","doi":"10.1002/adma.202505543","DOIUrl":null,"url":null,"abstract":"<p>All-inorganic tin (Sn)-containing perovskites have emerged as highly promising photovoltaic materials for single-junction and tandem perovskite solar cells (PSCs), owing to their reduced toxicity, optimal narrow bandgap, and superior thermal stability. Since their initial exploration in 2012, significant advancements have been achieved, with the highest efficiencies of single-junction and tandem devices now surpassing 17% and 22%, respectively. Nevertheless, the intrinsic challenges associated with the oxidation susceptibility of Sn<sup>2+</sup> and the uncontrolled crystallization dynamics impede their further development. Addressing these issues necessitates a comprehensive and systematic understanding of the degradation mechanisms inherent to all-inorganic Sn-containing perovskites, as well as the development of effective mitigation strategies. This review provides a detailed overview of the research progress in all-inorganic Sn-containing PSCs, with a particular focus on the basic properties and degradation pathways of both pristine Sn and mixed Sn-Pb perovskites. Furthermore, various strategies to improve the efficiency and stability of Sn-containing PSCs are thoroughly discussed. Finally, the existing challenges and perspectives are provided for further improving the photovoltaic performance of eco-friendly PSCs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 29","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Inorganic Tin-Containing Perovskite Solar Cells: An Emerging Eco-Friendly Photovoltaic Technology\",\"authors\":\"Xiang Zhang, Dan Zhang, Zaiwei Wang, Yixin Zhao, Hao Chen\",\"doi\":\"10.1002/adma.202505543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All-inorganic tin (Sn)-containing perovskites have emerged as highly promising photovoltaic materials for single-junction and tandem perovskite solar cells (PSCs), owing to their reduced toxicity, optimal narrow bandgap, and superior thermal stability. Since their initial exploration in 2012, significant advancements have been achieved, with the highest efficiencies of single-junction and tandem devices now surpassing 17% and 22%, respectively. Nevertheless, the intrinsic challenges associated with the oxidation susceptibility of Sn<sup>2+</sup> and the uncontrolled crystallization dynamics impede their further development. Addressing these issues necessitates a comprehensive and systematic understanding of the degradation mechanisms inherent to all-inorganic Sn-containing perovskites, as well as the development of effective mitigation strategies. This review provides a detailed overview of the research progress in all-inorganic Sn-containing PSCs, with a particular focus on the basic properties and degradation pathways of both pristine Sn and mixed Sn-Pb perovskites. Furthermore, various strategies to improve the efficiency and stability of Sn-containing PSCs are thoroughly discussed. Finally, the existing challenges and perspectives are provided for further improving the photovoltaic performance of eco-friendly PSCs.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 29\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202505543\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202505543","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
All-Inorganic Tin-Containing Perovskite Solar Cells: An Emerging Eco-Friendly Photovoltaic Technology
All-inorganic tin (Sn)-containing perovskites have emerged as highly promising photovoltaic materials for single-junction and tandem perovskite solar cells (PSCs), owing to their reduced toxicity, optimal narrow bandgap, and superior thermal stability. Since their initial exploration in 2012, significant advancements have been achieved, with the highest efficiencies of single-junction and tandem devices now surpassing 17% and 22%, respectively. Nevertheless, the intrinsic challenges associated with the oxidation susceptibility of Sn2+ and the uncontrolled crystallization dynamics impede their further development. Addressing these issues necessitates a comprehensive and systematic understanding of the degradation mechanisms inherent to all-inorganic Sn-containing perovskites, as well as the development of effective mitigation strategies. This review provides a detailed overview of the research progress in all-inorganic Sn-containing PSCs, with a particular focus on the basic properties and degradation pathways of both pristine Sn and mixed Sn-Pb perovskites. Furthermore, various strategies to improve the efficiency and stability of Sn-containing PSCs are thoroughly discussed. Finally, the existing challenges and perspectives are provided for further improving the photovoltaic performance of eco-friendly PSCs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.