{"title":"氧化还原振荡增强型水力发电机。","authors":"Puying Li, Jinguo Lin, Feng Liu, Guobin Lai, Yajie Hu, Tianlei Guang, Haiyan Wang, Huhu Cheng, Liangti Qu","doi":"10.1002/adma.202504865","DOIUrl":null,"url":null,"abstract":"<p>The energy crisis driven by the widespread use of fossil fuels highlights the urgent need for green energy solutions. A variety of green electric generators based on interfacial ion regulation have emerged in recent years. However, conventional electricity generation methods that rely solely on ion movement at interfaces suffer from a rapid decline in electrical signals due to poor ion-electron conversion at the interface. Inspired by the bioelectrical phenomena based on the variations in membrane potential and the glucose oxidation/reduction reactions, a redox oscillation enhanced water-enabled electric generator is herein proposed. The oscillating redox process not only boosts the ion-electron conversion at the interface but also enables the synergy between the non-Faraday current and the Faraday current. As a result, the generator achieves an impressive peak electric output of 1.20 mA cm<sup>−2</sup> and 0.41 W m<sup>−2</sup> for 60 days, outperforming various water-enabled electric generators. Furthermore, this generator can be integrated into a flexible unit for both portable and large-scale applications. This work presents a novel approach for enhancing the output of green energy devices based on interfacial ion migration.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 29","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox Oscillation Enhanced Water-Enabled Electric Generator\",\"authors\":\"Puying Li, Jinguo Lin, Feng Liu, Guobin Lai, Yajie Hu, Tianlei Guang, Haiyan Wang, Huhu Cheng, Liangti Qu\",\"doi\":\"10.1002/adma.202504865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The energy crisis driven by the widespread use of fossil fuels highlights the urgent need for green energy solutions. A variety of green electric generators based on interfacial ion regulation have emerged in recent years. However, conventional electricity generation methods that rely solely on ion movement at interfaces suffer from a rapid decline in electrical signals due to poor ion-electron conversion at the interface. Inspired by the bioelectrical phenomena based on the variations in membrane potential and the glucose oxidation/reduction reactions, a redox oscillation enhanced water-enabled electric generator is herein proposed. The oscillating redox process not only boosts the ion-electron conversion at the interface but also enables the synergy between the non-Faraday current and the Faraday current. As a result, the generator achieves an impressive peak electric output of 1.20 mA cm<sup>−2</sup> and 0.41 W m<sup>−2</sup> for 60 days, outperforming various water-enabled electric generators. Furthermore, this generator can be integrated into a flexible unit for both portable and large-scale applications. This work presents a novel approach for enhancing the output of green energy devices based on interfacial ion migration.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 29\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202504865\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202504865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Redox Oscillation Enhanced Water-Enabled Electric Generator
The energy crisis driven by the widespread use of fossil fuels highlights the urgent need for green energy solutions. A variety of green electric generators based on interfacial ion regulation have emerged in recent years. However, conventional electricity generation methods that rely solely on ion movement at interfaces suffer from a rapid decline in electrical signals due to poor ion-electron conversion at the interface. Inspired by the bioelectrical phenomena based on the variations in membrane potential and the glucose oxidation/reduction reactions, a redox oscillation enhanced water-enabled electric generator is herein proposed. The oscillating redox process not only boosts the ion-electron conversion at the interface but also enables the synergy between the non-Faraday current and the Faraday current. As a result, the generator achieves an impressive peak electric output of 1.20 mA cm−2 and 0.41 W m−2 for 60 days, outperforming various water-enabled electric generators. Furthermore, this generator can be integrated into a flexible unit for both portable and large-scale applications. This work presents a novel approach for enhancing the output of green energy devices based on interfacial ion migration.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.