一个高度保守的ABCG转运体介导拟南芥根-土壤内聚。

IF 6.9 1区 生物学 Q1 PLANT SCIENCES
Bethany M Eldridge,Emily R Larson,Lucy Mahony,James Clark,Jumana Akhtar,Clarice Noleto-Dias,Jane L Ward,Claire S Grierson
{"title":"一个高度保守的ABCG转运体介导拟南芥根-土壤内聚。","authors":"Bethany M Eldridge,Emily R Larson,Lucy Mahony,James Clark,Jumana Akhtar,Clarice Noleto-Dias,Jane L Ward,Claire S Grierson","doi":"10.1093/plphys/kiaf193","DOIUrl":null,"url":null,"abstract":"Identifying plant molecular mechanisms that mediate root-substrate interactions might offer potential solutions to soil erosion, especially in crop fields, where agricultural practices lead to soil loss. Mutants of the Arabidopsis (Arabidopsis thaliana) ATP-Binding Cassette G 43 (ABCG43) transporter gene show enhanced root-substrate cohesion, even though their root micro- and macro-structures are similar to those of wild-type Arabidopsis. We used genetic, biochemical, and functional methods to characterise the substrate-binding effects of changes in ABCG43 expression, including differences in exudate composition, and phylogenetic analyses to explore the evolutionary history of ABCG43 in land plants. Exudates from roots of the abcg43 mutant bound more soil and growing medium, and there were significant differences in abcg43 root exudate composition compared with the wild type. These results suggest that ABCG43 normally functions to mediate root exudates that affect root-substrate cohesion. Phylogenetic analysis showed that ABCG43 is highly conserved in plants, including in agriculturally important crop species. These results provide evidence that ABCG43 is a promising molecular target for developing crop plants with enhanced root-soil cohesion.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"37 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly conserved ABCG transporter mediates root-soil cohesion in Arabidopsis.\",\"authors\":\"Bethany M Eldridge,Emily R Larson,Lucy Mahony,James Clark,Jumana Akhtar,Clarice Noleto-Dias,Jane L Ward,Claire S Grierson\",\"doi\":\"10.1093/plphys/kiaf193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying plant molecular mechanisms that mediate root-substrate interactions might offer potential solutions to soil erosion, especially in crop fields, where agricultural practices lead to soil loss. Mutants of the Arabidopsis (Arabidopsis thaliana) ATP-Binding Cassette G 43 (ABCG43) transporter gene show enhanced root-substrate cohesion, even though their root micro- and macro-structures are similar to those of wild-type Arabidopsis. We used genetic, biochemical, and functional methods to characterise the substrate-binding effects of changes in ABCG43 expression, including differences in exudate composition, and phylogenetic analyses to explore the evolutionary history of ABCG43 in land plants. Exudates from roots of the abcg43 mutant bound more soil and growing medium, and there were significant differences in abcg43 root exudate composition compared with the wild type. These results suggest that ABCG43 normally functions to mediate root exudates that affect root-substrate cohesion. Phylogenetic analysis showed that ABCG43 is highly conserved in plants, including in agriculturally important crop species. These results provide evidence that ABCG43 is a promising molecular target for developing crop plants with enhanced root-soil cohesion.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf193\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf193","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

确定介导根-基质相互作用的植物分子机制可能为土壤侵蚀提供潜在的解决方案,特别是在农业实践导致土壤流失的农田。拟南芥(Arabidopsis thaliana) atp结合盒g43 (ABCG43)转运体基因突变体的根-底物内聚性增强,尽管其根微观和宏观结构与野生型拟南芥相似。我们使用遗传、生化和功能方法来表征ABCG43表达变化对底物结合的影响,包括渗出物组成的差异,并通过系统发育分析来探索ABCG43在陆地植物中的进化历史。abcg43突变体根系分泌物结合土壤和生长介质较多,根系分泌物组成与野生型差异显著。这些结果表明,ABCG43正常介导影响根与基质内聚的根渗出物。系统发育分析表明,ABCG43在植物中高度保守,包括在重要的农业作物物种中。这些结果表明,ABCG43是一个很有前途的分子靶点,可用于培育具有增强根-土凝聚力的作物植株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A highly conserved ABCG transporter mediates root-soil cohesion in Arabidopsis.
Identifying plant molecular mechanisms that mediate root-substrate interactions might offer potential solutions to soil erosion, especially in crop fields, where agricultural practices lead to soil loss. Mutants of the Arabidopsis (Arabidopsis thaliana) ATP-Binding Cassette G 43 (ABCG43) transporter gene show enhanced root-substrate cohesion, even though their root micro- and macro-structures are similar to those of wild-type Arabidopsis. We used genetic, biochemical, and functional methods to characterise the substrate-binding effects of changes in ABCG43 expression, including differences in exudate composition, and phylogenetic analyses to explore the evolutionary history of ABCG43 in land plants. Exudates from roots of the abcg43 mutant bound more soil and growing medium, and there were significant differences in abcg43 root exudate composition compared with the wild type. These results suggest that ABCG43 normally functions to mediate root exudates that affect root-substrate cohesion. Phylogenetic analysis showed that ABCG43 is highly conserved in plants, including in agriculturally important crop species. These results provide evidence that ABCG43 is a promising molecular target for developing crop plants with enhanced root-soil cohesion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信