{"title":"n6 -甲基腺苷解读子ECT1通过赤霉素酸和光敏色素b介导的信号传导调节种子萌发。","authors":"Zenglin Li,Yuhang Ma,Wen Sun,Pengjun Ding,Yifan Bu,Yuhong Qi,Tingrui Shi,Chengchao Jia,Beilei Lei,Chuang Ma","doi":"10.1093/plphys/kiaf180","DOIUrl":null,"url":null,"abstract":"Seed germination, a pivotal stage in plant growth, is governed by phytohormones such as gibberellic acid (GA) and influenced by phytochromes, which are key photoreceptors in plants. The N6-methyladenosine (m6A) RNA modification is fundamental to plant growth and development. However, the molecular mechanisms underlying the regulation of PHYTOCHROME B (phyB) and the function of m6A signaling in GA-mediated seed germination remain elusive. Here, we discovered EVOLUTIONARILY CONSERVED C-TERMINAL REGION 1 (ECT1) as an m6A reader protein that directly binds to m6A and forms homodimers to enhance its stability in Arabidopsis (Arabidopsis thaliana). We observed that the ect1-1 mutant exhibits attenuated GA3 responsiveness in seed germination. Restoration of ECT1 function in ect1-1 confirmed the role of ECT1 in promoting seed germination. Our findings indicate that ECT1 promotes seed germination by destabilizing m6A-modified REPRESSOR OF GA1-3 1 (RGA1), a key inhibitor of GA-mediated seed germination. Moreover, ECT1 establishes a regulatory circuit with DOF AFFECTING GERMINATION 2 (DAG2), another regulator of GA-mediated seed germination. DAG2 directly binds to the ECT1 promoter and controls its transcription, and ECT1 modulates DAG2 mRNA stability through m6A binding. Furthermore, we identified PHYB as a common downstream target of DAG2 and ECT1. ECT1 binds directly to m6A-modified PHYB and influences its stability, and DAG2 binds to the PHYB promoter to regulate its transcription. Our findings demonstrate that ECT1 fine-tunes m6A-regulated seed germination via complex and multifaceted molecular mechanisms, particularly through interactions with GA and phyB, broadening our understanding of m6A-regulated processes in Arabidopsis.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"25 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The N6-methyladenosine reader ECT1 regulates seed germination via gibberellic acid- and phytochrome B-mediated signaling.\",\"authors\":\"Zenglin Li,Yuhang Ma,Wen Sun,Pengjun Ding,Yifan Bu,Yuhong Qi,Tingrui Shi,Chengchao Jia,Beilei Lei,Chuang Ma\",\"doi\":\"10.1093/plphys/kiaf180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seed germination, a pivotal stage in plant growth, is governed by phytohormones such as gibberellic acid (GA) and influenced by phytochromes, which are key photoreceptors in plants. The N6-methyladenosine (m6A) RNA modification is fundamental to plant growth and development. However, the molecular mechanisms underlying the regulation of PHYTOCHROME B (phyB) and the function of m6A signaling in GA-mediated seed germination remain elusive. Here, we discovered EVOLUTIONARILY CONSERVED C-TERMINAL REGION 1 (ECT1) as an m6A reader protein that directly binds to m6A and forms homodimers to enhance its stability in Arabidopsis (Arabidopsis thaliana). We observed that the ect1-1 mutant exhibits attenuated GA3 responsiveness in seed germination. Restoration of ECT1 function in ect1-1 confirmed the role of ECT1 in promoting seed germination. Our findings indicate that ECT1 promotes seed germination by destabilizing m6A-modified REPRESSOR OF GA1-3 1 (RGA1), a key inhibitor of GA-mediated seed germination. Moreover, ECT1 establishes a regulatory circuit with DOF AFFECTING GERMINATION 2 (DAG2), another regulator of GA-mediated seed germination. DAG2 directly binds to the ECT1 promoter and controls its transcription, and ECT1 modulates DAG2 mRNA stability through m6A binding. Furthermore, we identified PHYB as a common downstream target of DAG2 and ECT1. ECT1 binds directly to m6A-modified PHYB and influences its stability, and DAG2 binds to the PHYB promoter to regulate its transcription. Our findings demonstrate that ECT1 fine-tunes m6A-regulated seed germination via complex and multifaceted molecular mechanisms, particularly through interactions with GA and phyB, broadening our understanding of m6A-regulated processes in Arabidopsis.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf180\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf180","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The N6-methyladenosine reader ECT1 regulates seed germination via gibberellic acid- and phytochrome B-mediated signaling.
Seed germination, a pivotal stage in plant growth, is governed by phytohormones such as gibberellic acid (GA) and influenced by phytochromes, which are key photoreceptors in plants. The N6-methyladenosine (m6A) RNA modification is fundamental to plant growth and development. However, the molecular mechanisms underlying the regulation of PHYTOCHROME B (phyB) and the function of m6A signaling in GA-mediated seed germination remain elusive. Here, we discovered EVOLUTIONARILY CONSERVED C-TERMINAL REGION 1 (ECT1) as an m6A reader protein that directly binds to m6A and forms homodimers to enhance its stability in Arabidopsis (Arabidopsis thaliana). We observed that the ect1-1 mutant exhibits attenuated GA3 responsiveness in seed germination. Restoration of ECT1 function in ect1-1 confirmed the role of ECT1 in promoting seed germination. Our findings indicate that ECT1 promotes seed germination by destabilizing m6A-modified REPRESSOR OF GA1-3 1 (RGA1), a key inhibitor of GA-mediated seed germination. Moreover, ECT1 establishes a regulatory circuit with DOF AFFECTING GERMINATION 2 (DAG2), another regulator of GA-mediated seed germination. DAG2 directly binds to the ECT1 promoter and controls its transcription, and ECT1 modulates DAG2 mRNA stability through m6A binding. Furthermore, we identified PHYB as a common downstream target of DAG2 and ECT1. ECT1 binds directly to m6A-modified PHYB and influences its stability, and DAG2 binds to the PHYB promoter to regulate its transcription. Our findings demonstrate that ECT1 fine-tunes m6A-regulated seed germination via complex and multifaceted molecular mechanisms, particularly through interactions with GA and phyB, broadening our understanding of m6A-regulated processes in Arabidopsis.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.