不依赖氧的硫酸盐自由基和Fe2+修饰种植体用于感染性骨缺损的快速灭菌和骨整合。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-11 DOI:10.1021/acsnano.5c04147
Ziyou Wang,Yiling Huang,Shuai He,Meng Li,Jing Gong,Lei Cheng,Jiyao Li,Yi Deng,Kunneng Liang
{"title":"不依赖氧的硫酸盐自由基和Fe2+修饰种植体用于感染性骨缺损的快速灭菌和骨整合。","authors":"Ziyou Wang,Yiling Huang,Shuai He,Meng Li,Jing Gong,Lei Cheng,Jiyao Li,Yi Deng,Kunneng Liang","doi":"10.1021/acsnano.5c04147","DOIUrl":null,"url":null,"abstract":"Currently, emerging dynamic therapy has gradually become a frequently used strategy for treating infectious bone defects via a rise in reactive oxygen species (ROS) levels, which can bring about oxidative harm to bacteria. However, ROS can be generated only under conditions of exogenous energy, limited by energy penetration or dependence on the existence of internal O2/H2O2. Thus, we designed Na2S2O8-decorated polyetheretherketone implants activated by Fe2+ for infected bone defects. In vitro experiments show that they generate sulfate radical (·SO4-) and hydroxyl radical (·OH) without O2/H2O2 existence, effectively killing bacteria. Additionally, the released Fe2+ enters bacteria and triggers ferroptosis-like death via lipid peroxidation. In vivo experiments show implants achieve an ideal effect of bone integration through a high-efficiency bactericidal effect and enhanced osteogenic activity. As envisioned, our proposed strategy offers a promising approach to halt refractory infection of bone tissue by autonomously catalyzing ROS storms and ferroptosis-like death, facilitating bone-defect recovery.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"57 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen-Independent Sulfate Radical and Fe2+-Modified Implants for Fast Sterilization and Osseointegration of Infectious Bone Defects.\",\"authors\":\"Ziyou Wang,Yiling Huang,Shuai He,Meng Li,Jing Gong,Lei Cheng,Jiyao Li,Yi Deng,Kunneng Liang\",\"doi\":\"10.1021/acsnano.5c04147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, emerging dynamic therapy has gradually become a frequently used strategy for treating infectious bone defects via a rise in reactive oxygen species (ROS) levels, which can bring about oxidative harm to bacteria. However, ROS can be generated only under conditions of exogenous energy, limited by energy penetration or dependence on the existence of internal O2/H2O2. Thus, we designed Na2S2O8-decorated polyetheretherketone implants activated by Fe2+ for infected bone defects. In vitro experiments show that they generate sulfate radical (·SO4-) and hydroxyl radical (·OH) without O2/H2O2 existence, effectively killing bacteria. Additionally, the released Fe2+ enters bacteria and triggers ferroptosis-like death via lipid peroxidation. In vivo experiments show implants achieve an ideal effect of bone integration through a high-efficiency bactericidal effect and enhanced osteogenic activity. As envisioned, our proposed strategy offers a promising approach to halt refractory infection of bone tissue by autonomously catalyzing ROS storms and ferroptosis-like death, facilitating bone-defect recovery.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c04147\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c04147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,新兴的动态疗法已逐渐成为一种常用的治疗感染性骨缺损的策略,通过提高活性氧(ROS)水平,可对细菌造成氧化伤害。然而,ROS只能在外源能量的条件下产生,受制于能量穿透或依赖于内部O2/H2O2的存在。因此,我们设计了Fe2+激活的na2s2o8修饰聚醚醚酮植入物用于感染骨缺损。体外实验表明,它们在不存在O2/H2O2的情况下产生硫酸盐自由基(·SO4-)和羟基自由基(·OH),有效杀灭细菌。此外,释放的Fe2+进入细菌并通过脂质过氧化引发嗜铁性死亡。体内实验表明,种植体通过高效杀菌和增强成骨活性实现了理想的骨整合效果。正如所设想的那样,我们提出的策略提供了一种有希望的方法,通过自主催化ROS风暴和铁中毒样死亡来阻止骨组织的难治性感染,促进骨缺陷的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen-Independent Sulfate Radical and Fe2+-Modified Implants for Fast Sterilization and Osseointegration of Infectious Bone Defects.
Currently, emerging dynamic therapy has gradually become a frequently used strategy for treating infectious bone defects via a rise in reactive oxygen species (ROS) levels, which can bring about oxidative harm to bacteria. However, ROS can be generated only under conditions of exogenous energy, limited by energy penetration or dependence on the existence of internal O2/H2O2. Thus, we designed Na2S2O8-decorated polyetheretherketone implants activated by Fe2+ for infected bone defects. In vitro experiments show that they generate sulfate radical (·SO4-) and hydroxyl radical (·OH) without O2/H2O2 existence, effectively killing bacteria. Additionally, the released Fe2+ enters bacteria and triggers ferroptosis-like death via lipid peroxidation. In vivo experiments show implants achieve an ideal effect of bone integration through a high-efficiency bactericidal effect and enhanced osteogenic activity. As envisioned, our proposed strategy offers a promising approach to halt refractory infection of bone tissue by autonomously catalyzing ROS storms and ferroptosis-like death, facilitating bone-defect recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信