{"title":"扭曲构象的I型BODITh光敏剂用于增强光动力治疗和fox01参与的细胞凋亡。","authors":"Tian Zhang,Jiahong Li,Jinjun Shao,Xiaorui Wang,Peng Chen,Huili Ma,Lulu Qu,Xiaochen Dong","doi":"10.1021/acs.nanolett.5c01663","DOIUrl":null,"url":null,"abstract":"Developing targeted type I photosensitizers with low oxygen-dependence is essential to overcome tumor hypoxia and address the short diffusion radius of free radicals in photodynamic therapy (PDT). Herein, two Boron dithiazolemethene (BODITh)-derivatives, SBDP-1 and SBDP-2 with different numbers of thiophene units, were designed as mitochondria-targeted type I photosensitizers with significant ·OH generation. Through theoretical calculations, the additional thiophene unit in SBDP-2 induced a torsional conformation with a smaller overlap integral of holes and electrons than SBDP-1, resulting in an increased spin-orbit coupling (SOC) constant with a decreased singlet-triplet energy gap (ΔEST), thereby promoting the intersystem crossing (ISC) process. Moreover, through a molecular docking study, SBDP-2 NPs could bind to miR-96 via hydrophobic interaction and trigger the forkhead box protein O1 (FOXO1) involved pathway to accelerate cell apoptosis. This work presented innovative type I photosensitizers with twisted conformation for efficient cancer PDT to conquer tumor hypoxia.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"3 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type I BODITh Photosensitizers with Twisted Conformation for Augmented Photodynamic Therapy and FOXO1-Involved Apoptosis.\",\"authors\":\"Tian Zhang,Jiahong Li,Jinjun Shao,Xiaorui Wang,Peng Chen,Huili Ma,Lulu Qu,Xiaochen Dong\",\"doi\":\"10.1021/acs.nanolett.5c01663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing targeted type I photosensitizers with low oxygen-dependence is essential to overcome tumor hypoxia and address the short diffusion radius of free radicals in photodynamic therapy (PDT). Herein, two Boron dithiazolemethene (BODITh)-derivatives, SBDP-1 and SBDP-2 with different numbers of thiophene units, were designed as mitochondria-targeted type I photosensitizers with significant ·OH generation. Through theoretical calculations, the additional thiophene unit in SBDP-2 induced a torsional conformation with a smaller overlap integral of holes and electrons than SBDP-1, resulting in an increased spin-orbit coupling (SOC) constant with a decreased singlet-triplet energy gap (ΔEST), thereby promoting the intersystem crossing (ISC) process. Moreover, through a molecular docking study, SBDP-2 NPs could bind to miR-96 via hydrophobic interaction and trigger the forkhead box protein O1 (FOXO1) involved pathway to accelerate cell apoptosis. This work presented innovative type I photosensitizers with twisted conformation for efficient cancer PDT to conquer tumor hypoxia.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01663\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Type I BODITh Photosensitizers with Twisted Conformation for Augmented Photodynamic Therapy and FOXO1-Involved Apoptosis.
Developing targeted type I photosensitizers with low oxygen-dependence is essential to overcome tumor hypoxia and address the short diffusion radius of free radicals in photodynamic therapy (PDT). Herein, two Boron dithiazolemethene (BODITh)-derivatives, SBDP-1 and SBDP-2 with different numbers of thiophene units, were designed as mitochondria-targeted type I photosensitizers with significant ·OH generation. Through theoretical calculations, the additional thiophene unit in SBDP-2 induced a torsional conformation with a smaller overlap integral of holes and electrons than SBDP-1, resulting in an increased spin-orbit coupling (SOC) constant with a decreased singlet-triplet energy gap (ΔEST), thereby promoting the intersystem crossing (ISC) process. Moreover, through a molecular docking study, SBDP-2 NPs could bind to miR-96 via hydrophobic interaction and trigger the forkhead box protein O1 (FOXO1) involved pathway to accelerate cell apoptosis. This work presented innovative type I photosensitizers with twisted conformation for efficient cancer PDT to conquer tumor hypoxia.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.