Lucía Hidalgo‐Arteaga, Beatriz Castillo López de Larrinzar, Antonio García‐Martín, Diego R. Abujetas, José A. Sánchez‐Gil
{"title":"具有面外对称破缺的半导体超表面连续体中的隐形准束缚态","authors":"Lucía Hidalgo‐Arteaga, Beatriz Castillo López de Larrinzar, Antonio García‐Martín, Diego R. Abujetas, José A. Sánchez‐Gil","doi":"10.1002/lpor.202500799","DOIUrl":null,"url":null,"abstract":"Bound states in the continuum (BICs) have attracted much attention in Nanophotonics for their (formally) infinite Q factors, quasi‐BICs (qBICs) being the symmetry‐broken version allowing for in‐ and out‐coupling at the expense of finite (but large) Q factors. Here, it is demonstrated that dark and asymmetric qBICs arise in the optical domain in Si tilted nanodisk metasurfaces, due to the spectral overlap of in‐plane and out‐of‐plane dipolar resonances in these meta‐atoms, similar to so called Brewster qBICs in the microwave regime for single‐magnetic‐resonance, tilted microdisks, arising at the tilt angle. Using a coupled dipole model, it is shown that optical dark qBICs occur for tilted nanodisks at modified Brewster angles that can differ significantly from the nanodisk tilt angles, , due to the hybridization of in‐plane and out‐of‐plane dipolar resonances. If light is incident at , qBIC excitation is forbidden and the metasurface is transparent; counterintuitively, for , the qBIC is indeed excited but the metasurface remains also fully transparent, so that such qBIC excitation is cloaked. Numerical calculations confirm the asymmetric character of these qBICs, demonstrating that the cloaked qBIC largely enhances near‐fields and emerges in the extinction only when absorptive losses are present in the nanodisks. Finally, a practical metasurface design is proposed, amenable to fabrication, supporting cloaked qBICs. The rich phenomena associated with such cloaked qBICs make them highly suitable for tuning or switching nano‐optical devices (between on/off qBIC states with negligible reflection), offering promising applications for enhanced light–matter interactions at the nanoscale.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"7 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloaked Quasi Bound States in the Continuum in Semiconductor Metasurfaces with Out‐of‐Plane Symmetry Breaking\",\"authors\":\"Lucía Hidalgo‐Arteaga, Beatriz Castillo López de Larrinzar, Antonio García‐Martín, Diego R. Abujetas, José A. Sánchez‐Gil\",\"doi\":\"10.1002/lpor.202500799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bound states in the continuum (BICs) have attracted much attention in Nanophotonics for their (formally) infinite Q factors, quasi‐BICs (qBICs) being the symmetry‐broken version allowing for in‐ and out‐coupling at the expense of finite (but large) Q factors. Here, it is demonstrated that dark and asymmetric qBICs arise in the optical domain in Si tilted nanodisk metasurfaces, due to the spectral overlap of in‐plane and out‐of‐plane dipolar resonances in these meta‐atoms, similar to so called Brewster qBICs in the microwave regime for single‐magnetic‐resonance, tilted microdisks, arising at the tilt angle. Using a coupled dipole model, it is shown that optical dark qBICs occur for tilted nanodisks at modified Brewster angles that can differ significantly from the nanodisk tilt angles, , due to the hybridization of in‐plane and out‐of‐plane dipolar resonances. If light is incident at , qBIC excitation is forbidden and the metasurface is transparent; counterintuitively, for , the qBIC is indeed excited but the metasurface remains also fully transparent, so that such qBIC excitation is cloaked. Numerical calculations confirm the asymmetric character of these qBICs, demonstrating that the cloaked qBIC largely enhances near‐fields and emerges in the extinction only when absorptive losses are present in the nanodisks. Finally, a practical metasurface design is proposed, amenable to fabrication, supporting cloaked qBICs. The rich phenomena associated with such cloaked qBICs make them highly suitable for tuning or switching nano‐optical devices (between on/off qBIC states with negligible reflection), offering promising applications for enhanced light–matter interactions at the nanoscale.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202500799\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202500799","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Cloaked Quasi Bound States in the Continuum in Semiconductor Metasurfaces with Out‐of‐Plane Symmetry Breaking
Bound states in the continuum (BICs) have attracted much attention in Nanophotonics for their (formally) infinite Q factors, quasi‐BICs (qBICs) being the symmetry‐broken version allowing for in‐ and out‐coupling at the expense of finite (but large) Q factors. Here, it is demonstrated that dark and asymmetric qBICs arise in the optical domain in Si tilted nanodisk metasurfaces, due to the spectral overlap of in‐plane and out‐of‐plane dipolar resonances in these meta‐atoms, similar to so called Brewster qBICs in the microwave regime for single‐magnetic‐resonance, tilted microdisks, arising at the tilt angle. Using a coupled dipole model, it is shown that optical dark qBICs occur for tilted nanodisks at modified Brewster angles that can differ significantly from the nanodisk tilt angles, , due to the hybridization of in‐plane and out‐of‐plane dipolar resonances. If light is incident at , qBIC excitation is forbidden and the metasurface is transparent; counterintuitively, for , the qBIC is indeed excited but the metasurface remains also fully transparent, so that such qBIC excitation is cloaked. Numerical calculations confirm the asymmetric character of these qBICs, demonstrating that the cloaked qBIC largely enhances near‐fields and emerges in the extinction only when absorptive losses are present in the nanodisks. Finally, a practical metasurface design is proposed, amenable to fabrication, supporting cloaked qBICs. The rich phenomena associated with such cloaked qBICs make them highly suitable for tuning or switching nano‐optical devices (between on/off qBIC states with negligible reflection), offering promising applications for enhanced light–matter interactions at the nanoscale.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.