苯二甲酸及相关诱饵脂肪酸的分子靶点。

Julianna G Supplee,Ronen Marmorstein,Kathryn E Wellen
{"title":"苯二甲酸及相关诱饵脂肪酸的分子靶点。","authors":"Julianna G Supplee,Ronen Marmorstein,Kathryn E Wellen","doi":"10.1016/j.tem.2025.04.002","DOIUrl":null,"url":null,"abstract":"Disorders of lipid metabolism, including hyperlipidemia, atherosclerosis, and metabolic dysfunction-associated steatotic liver disease, are increasing across the globe. Bempedoic acid (BPA) is a first-in-class drug for the treatment of hypercholesterolemia and cardiac risk reduction, which may particularly benefit those who do not tolerate statins. Inhibition of hepatic ATP-citrate lyase (ACLY) is widely accepted as the main mediator of its observed clinical effects. However, BPA treatment also has ACLY-independent effects on lipid metabolism, as the structural similarity of BPA to endogenous fatty acids allows it to trigger multiple lipid-signaling pathways. Here, we review the molecular targets of BPA and related 'decoy fatty acid' drugs and identify areas where further study is warranted as these molecules are evaluated for clinical indications.","PeriodicalId":23301,"journal":{"name":"Trends in Endocrinology & Metabolism","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular targets of bempedoic acid and related decoy fatty acids.\",\"authors\":\"Julianna G Supplee,Ronen Marmorstein,Kathryn E Wellen\",\"doi\":\"10.1016/j.tem.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disorders of lipid metabolism, including hyperlipidemia, atherosclerosis, and metabolic dysfunction-associated steatotic liver disease, are increasing across the globe. Bempedoic acid (BPA) is a first-in-class drug for the treatment of hypercholesterolemia and cardiac risk reduction, which may particularly benefit those who do not tolerate statins. Inhibition of hepatic ATP-citrate lyase (ACLY) is widely accepted as the main mediator of its observed clinical effects. However, BPA treatment also has ACLY-independent effects on lipid metabolism, as the structural similarity of BPA to endogenous fatty acids allows it to trigger multiple lipid-signaling pathways. Here, we review the molecular targets of BPA and related 'decoy fatty acid' drugs and identify areas where further study is warranted as these molecules are evaluated for clinical indications.\",\"PeriodicalId\":23301,\"journal\":{\"name\":\"Trends in Endocrinology & Metabolism\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Endocrinology & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tem.2025.04.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tem.2025.04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脂质代谢紊乱,包括高脂血症、动脉粥样硬化和代谢功能障碍相关的脂肪变性肝病,在全球范围内正在增加。双苯二甲酸(BPA)是治疗高胆固醇血症和降低心脏病风险的一流药物,对那些不能耐受他汀类药物的人尤其有益。肝atp -柠檬酸裂解酶(ACLY)的抑制被广泛认为是其观察到的临床效果的主要中介。然而,BPA处理对脂质代谢也具有不依赖于acly的作用,因为BPA与内源性脂肪酸的结构相似性使其能够触发多种脂质信号通路。在这里,我们回顾了双酚a和相关“诱饵脂肪酸”药物的分子靶点,并确定了这些分子在临床适应症评估时需要进一步研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular targets of bempedoic acid and related decoy fatty acids.
Disorders of lipid metabolism, including hyperlipidemia, atherosclerosis, and metabolic dysfunction-associated steatotic liver disease, are increasing across the globe. Bempedoic acid (BPA) is a first-in-class drug for the treatment of hypercholesterolemia and cardiac risk reduction, which may particularly benefit those who do not tolerate statins. Inhibition of hepatic ATP-citrate lyase (ACLY) is widely accepted as the main mediator of its observed clinical effects. However, BPA treatment also has ACLY-independent effects on lipid metabolism, as the structural similarity of BPA to endogenous fatty acids allows it to trigger multiple lipid-signaling pathways. Here, we review the molecular targets of BPA and related 'decoy fatty acid' drugs and identify areas where further study is warranted as these molecules are evaluated for clinical indications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信