Ashitha George, B. S. Athira, Achu Chandran, Kuzhichalil Peethambharan Surendran, E. Bhoje Gowd
{"title":"用于高性能压电能量收集器和自供电声传感器的自极化PVDF渗透尼龙11气凝胶。","authors":"Ashitha George, B. S. Athira, Achu Chandran, Kuzhichalil Peethambharan Surendran, E. Bhoje Gowd","doi":"10.1002/smll.202502794","DOIUrl":null,"url":null,"abstract":"<p>\nEfficient piezoelectric polymers with enhanced electromechanical conversion gain significant attention for energy harvesting and sensing applications. Among them, poly(vinylidene fluoride) (PVDF) and odd-nylons stand out due to their high piezoelectric coefficients and thermal stability. However, achieving a piezoelectric phase with a preferred crystal orientation for optimal performance remains challenging, particularly under mild processing conditions. In this study, a vacuum-assisted infiltration technique is introduced to fabricate PVDF-infiltrated nylon-11 (PVDFIPA11) aerogels with oriented polymer crystallites. Anisotropic nylon-11 aerogels, featuring aligned polymer crystals, serve as templates for PVDF infiltration under vacuum. This process facilitates the formation of highly oriented <i>β</i> phase PVDF crystals alongside <i>γ</i> phase nylon-11 crystals, yielding a fully self-poled system without the need for external poling. A piezoelectric nanogenerator (PENG) based on the PVDFIPA11 aerogel exhibits a high output voltage (peak-to-peak) of ≈45 V<sub>pp</sub> and a peak power density of 2.2 Wm⁻<sup>3</sup> significantly outperforming pristine PVDF and nylon-11 aerogels. Additionally, the PVDFIPA11 aerogel PENG is demonstrated as a self-powered acoustic sensor, effectively distinguishing sound signals at varying pressure levels. This work provides a scalable and practical strategy for developing self-poled piezoelectric polymer aerogels, paving the way for next-generation energy-harvesting devices and sensors.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 26","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Poled PVDF Infiltrated Nylon 11 Aerogels with Oriented Crystals for High-Performance Piezoelectric Energy Harvesters and Self-Powered Acoustic Sensors\",\"authors\":\"Ashitha George, B. S. Athira, Achu Chandran, Kuzhichalil Peethambharan Surendran, E. Bhoje Gowd\",\"doi\":\"10.1002/smll.202502794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nEfficient piezoelectric polymers with enhanced electromechanical conversion gain significant attention for energy harvesting and sensing applications. Among them, poly(vinylidene fluoride) (PVDF) and odd-nylons stand out due to their high piezoelectric coefficients and thermal stability. However, achieving a piezoelectric phase with a preferred crystal orientation for optimal performance remains challenging, particularly under mild processing conditions. In this study, a vacuum-assisted infiltration technique is introduced to fabricate PVDF-infiltrated nylon-11 (PVDFIPA11) aerogels with oriented polymer crystallites. Anisotropic nylon-11 aerogels, featuring aligned polymer crystals, serve as templates for PVDF infiltration under vacuum. This process facilitates the formation of highly oriented <i>β</i> phase PVDF crystals alongside <i>γ</i> phase nylon-11 crystals, yielding a fully self-poled system without the need for external poling. A piezoelectric nanogenerator (PENG) based on the PVDFIPA11 aerogel exhibits a high output voltage (peak-to-peak) of ≈45 V<sub>pp</sub> and a peak power density of 2.2 Wm⁻<sup>3</sup> significantly outperforming pristine PVDF and nylon-11 aerogels. Additionally, the PVDFIPA11 aerogel PENG is demonstrated as a self-powered acoustic sensor, effectively distinguishing sound signals at varying pressure levels. This work provides a scalable and practical strategy for developing self-poled piezoelectric polymer aerogels, paving the way for next-generation energy-harvesting devices and sensors.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 26\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202502794\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202502794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Poled PVDF Infiltrated Nylon 11 Aerogels with Oriented Crystals for High-Performance Piezoelectric Energy Harvesters and Self-Powered Acoustic Sensors
Efficient piezoelectric polymers with enhanced electromechanical conversion gain significant attention for energy harvesting and sensing applications. Among them, poly(vinylidene fluoride) (PVDF) and odd-nylons stand out due to their high piezoelectric coefficients and thermal stability. However, achieving a piezoelectric phase with a preferred crystal orientation for optimal performance remains challenging, particularly under mild processing conditions. In this study, a vacuum-assisted infiltration technique is introduced to fabricate PVDF-infiltrated nylon-11 (PVDFIPA11) aerogels with oriented polymer crystallites. Anisotropic nylon-11 aerogels, featuring aligned polymer crystals, serve as templates for PVDF infiltration under vacuum. This process facilitates the formation of highly oriented β phase PVDF crystals alongside γ phase nylon-11 crystals, yielding a fully self-poled system without the need for external poling. A piezoelectric nanogenerator (PENG) based on the PVDFIPA11 aerogel exhibits a high output voltage (peak-to-peak) of ≈45 Vpp and a peak power density of 2.2 Wm⁻3 significantly outperforming pristine PVDF and nylon-11 aerogels. Additionally, the PVDFIPA11 aerogel PENG is demonstrated as a self-powered acoustic sensor, effectively distinguishing sound signals at varying pressure levels. This work provides a scalable and practical strategy for developing self-poled piezoelectric polymer aerogels, paving the way for next-generation energy-harvesting devices and sensors.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.