{"title":"基于人工神经网络的森林公路生态土坡稳定技术评价","authors":"Kıvanç Yüksel , Neşe Gülci , Abdullah Emin Akay , Sercan Gülci","doi":"10.1016/j.ijsrc.2025.01.011","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the effectiveness of different stabilization techniques implemented on the forest road cut slopes was investigated in terms of controlling erosion and runoff. Wood production residues, hydroseeding, and jute geotextile treatments were applied on study plots located on the example road. The amount of erosion and runoff were measured on the study plots which were established for different slope grades of 20°, 30°, and 40°. Then, the amount of erosion and runoff measured from the plots were compared to determine the performance of stabilization techniques on the cut slope. In the solution process, an Artificial Neural Network (ANN) model, which is one of the machine learning algorithms, was used to predict sediment yield from forest road cut slopes. The sediment yields averaged over the three slope grades from highest to lowest were measured as 6.41, 1.16, 0.65, and 0.45 g/m<sup>2</sup> in the control plot with no treatment, jute geotextile, hydroseeding, and wood production residues, respectively. The averaged over the three runoff amounts slope grades from the highest to the lowest were determined as 6.82, 3.71, 1.64, and 1.30 mm/m<sup>2</sup> in control the plot, jute geotextile, hydroseeding, and wood production residues, respectively. Comparing to the control plot, wood production residues, hydroseeding, and jute geotextile treatments reduced the sediment yields by 14, 10, and 5 times, respectively. On the other hand, wood production residues, hydroseeding, and jute geotextile applications reduced the runoff amount by 5, 4, and 2 times, respectively. As a result, it was found that wood production residues and hydroseeding treatment can be more efficient in reducing the amount of runoff and sediment yield compared to the jute geotextile treatment. The ANN method achieved high accuracy in predicting sediment yield and it was concluded that the ANN can be used as an effective method to evaluate soil slope stabilization techniques.</div></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"40 3","pages":"Pages 476-488"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of eco-friendly soil slope stabilization techniques for forest roads by using an Artificial Neural Network (ANN)\",\"authors\":\"Kıvanç Yüksel , Neşe Gülci , Abdullah Emin Akay , Sercan Gülci\",\"doi\":\"10.1016/j.ijsrc.2025.01.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the effectiveness of different stabilization techniques implemented on the forest road cut slopes was investigated in terms of controlling erosion and runoff. Wood production residues, hydroseeding, and jute geotextile treatments were applied on study plots located on the example road. The amount of erosion and runoff were measured on the study plots which were established for different slope grades of 20°, 30°, and 40°. Then, the amount of erosion and runoff measured from the plots were compared to determine the performance of stabilization techniques on the cut slope. In the solution process, an Artificial Neural Network (ANN) model, which is one of the machine learning algorithms, was used to predict sediment yield from forest road cut slopes. The sediment yields averaged over the three slope grades from highest to lowest were measured as 6.41, 1.16, 0.65, and 0.45 g/m<sup>2</sup> in the control plot with no treatment, jute geotextile, hydroseeding, and wood production residues, respectively. The averaged over the three runoff amounts slope grades from the highest to the lowest were determined as 6.82, 3.71, 1.64, and 1.30 mm/m<sup>2</sup> in control the plot, jute geotextile, hydroseeding, and wood production residues, respectively. Comparing to the control plot, wood production residues, hydroseeding, and jute geotextile treatments reduced the sediment yields by 14, 10, and 5 times, respectively. On the other hand, wood production residues, hydroseeding, and jute geotextile applications reduced the runoff amount by 5, 4, and 2 times, respectively. As a result, it was found that wood production residues and hydroseeding treatment can be more efficient in reducing the amount of runoff and sediment yield compared to the jute geotextile treatment. The ANN method achieved high accuracy in predicting sediment yield and it was concluded that the ANN can be used as an effective method to evaluate soil slope stabilization techniques.</div></div>\",\"PeriodicalId\":50290,\"journal\":{\"name\":\"International Journal of Sediment Research\",\"volume\":\"40 3\",\"pages\":\"Pages 476-488\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sediment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001627925000125\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627925000125","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Evaluation of eco-friendly soil slope stabilization techniques for forest roads by using an Artificial Neural Network (ANN)
In this study, the effectiveness of different stabilization techniques implemented on the forest road cut slopes was investigated in terms of controlling erosion and runoff. Wood production residues, hydroseeding, and jute geotextile treatments were applied on study plots located on the example road. The amount of erosion and runoff were measured on the study plots which were established for different slope grades of 20°, 30°, and 40°. Then, the amount of erosion and runoff measured from the plots were compared to determine the performance of stabilization techniques on the cut slope. In the solution process, an Artificial Neural Network (ANN) model, which is one of the machine learning algorithms, was used to predict sediment yield from forest road cut slopes. The sediment yields averaged over the three slope grades from highest to lowest were measured as 6.41, 1.16, 0.65, and 0.45 g/m2 in the control plot with no treatment, jute geotextile, hydroseeding, and wood production residues, respectively. The averaged over the three runoff amounts slope grades from the highest to the lowest were determined as 6.82, 3.71, 1.64, and 1.30 mm/m2 in control the plot, jute geotextile, hydroseeding, and wood production residues, respectively. Comparing to the control plot, wood production residues, hydroseeding, and jute geotextile treatments reduced the sediment yields by 14, 10, and 5 times, respectively. On the other hand, wood production residues, hydroseeding, and jute geotextile applications reduced the runoff amount by 5, 4, and 2 times, respectively. As a result, it was found that wood production residues and hydroseeding treatment can be more efficient in reducing the amount of runoff and sediment yield compared to the jute geotextile treatment. The ANN method achieved high accuracy in predicting sediment yield and it was concluded that the ANN can be used as an effective method to evaluate soil slope stabilization techniques.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.