Jorge Mongil-Manso , Carmen Patino-Alonso , José Nespereira-Jato , José-Luis Molina , Fernando Espejo , Teresa Diez-Castro , Santiago Zazo , Fernando Silla
{"title":"通过降雨模拟评估地中海水库集水区的入渗和侵蚀速率","authors":"Jorge Mongil-Manso , Carmen Patino-Alonso , José Nespereira-Jato , José-Luis Molina , Fernando Espejo , Teresa Diez-Castro , Santiago Zazo , Fernando Silla","doi":"10.1016/j.ijsrc.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>The land use and vegetation type of a reservoir's catchment substantially affect the hydrological processes of soil infiltration and runoff. They also act as drivers or constraints for erosive processes. All the previous processes influence the amount of water and sediment that reach the reservoir and affect its functioning. This study is mainly aimed to improve the knowledge of these processes in southeastern Spain by means of experimental rainfall simulation and multivariate statistical analysis. The results show that the mean infiltration rate is 1.06 times higher in forests than in shrublands and 1.07 times higher than in olive crops (280.52, 265.02, and 262.08 mm/h, respectively), with mean surface runoff consequently 1.57 times lower in forests than in shrublands and 2.41 times lower than in olive crops (20.81, 32.58, and 50.24 mm/h). Likewise, the sediment concentration in the runs is 5.48 times higher in olive groves (518.43 g/L) than in forests (94.61 g/L) and 2.94 times higher than in shrublands (176.48 g/L). Soil properties and parent material might have a more important effect on the studied variables than the different vegetation types. Furthermore, root systems and the use of tillage on crops could favor infiltration, which would tend to equalize the values of the variables analyzed; but this needs to be demonstrated in future research. The results obtained are of interest for vegetation cover and soils management in reservoirs’ catchments in Mediterranean areas. Furthermore, the current research provides an opportunity to study more specifically the origin of the sediment that reaches the reservoirs, beyond sheet and rill erosion.</div></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"40 3","pages":"Pages 466-475"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of infiltration and erosion rates in Mediterranean reservoirs’ catchments through rainfall simulation\",\"authors\":\"Jorge Mongil-Manso , Carmen Patino-Alonso , José Nespereira-Jato , José-Luis Molina , Fernando Espejo , Teresa Diez-Castro , Santiago Zazo , Fernando Silla\",\"doi\":\"10.1016/j.ijsrc.2025.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The land use and vegetation type of a reservoir's catchment substantially affect the hydrological processes of soil infiltration and runoff. They also act as drivers or constraints for erosive processes. All the previous processes influence the amount of water and sediment that reach the reservoir and affect its functioning. This study is mainly aimed to improve the knowledge of these processes in southeastern Spain by means of experimental rainfall simulation and multivariate statistical analysis. The results show that the mean infiltration rate is 1.06 times higher in forests than in shrublands and 1.07 times higher than in olive crops (280.52, 265.02, and 262.08 mm/h, respectively), with mean surface runoff consequently 1.57 times lower in forests than in shrublands and 2.41 times lower than in olive crops (20.81, 32.58, and 50.24 mm/h). Likewise, the sediment concentration in the runs is 5.48 times higher in olive groves (518.43 g/L) than in forests (94.61 g/L) and 2.94 times higher than in shrublands (176.48 g/L). Soil properties and parent material might have a more important effect on the studied variables than the different vegetation types. Furthermore, root systems and the use of tillage on crops could favor infiltration, which would tend to equalize the values of the variables analyzed; but this needs to be demonstrated in future research. The results obtained are of interest for vegetation cover and soils management in reservoirs’ catchments in Mediterranean areas. Furthermore, the current research provides an opportunity to study more specifically the origin of the sediment that reaches the reservoirs, beyond sheet and rill erosion.</div></div>\",\"PeriodicalId\":50290,\"journal\":{\"name\":\"International Journal of Sediment Research\",\"volume\":\"40 3\",\"pages\":\"Pages 466-475\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sediment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001627925000034\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627925000034","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of infiltration and erosion rates in Mediterranean reservoirs’ catchments through rainfall simulation
The land use and vegetation type of a reservoir's catchment substantially affect the hydrological processes of soil infiltration and runoff. They also act as drivers or constraints for erosive processes. All the previous processes influence the amount of water and sediment that reach the reservoir and affect its functioning. This study is mainly aimed to improve the knowledge of these processes in southeastern Spain by means of experimental rainfall simulation and multivariate statistical analysis. The results show that the mean infiltration rate is 1.06 times higher in forests than in shrublands and 1.07 times higher than in olive crops (280.52, 265.02, and 262.08 mm/h, respectively), with mean surface runoff consequently 1.57 times lower in forests than in shrublands and 2.41 times lower than in olive crops (20.81, 32.58, and 50.24 mm/h). Likewise, the sediment concentration in the runs is 5.48 times higher in olive groves (518.43 g/L) than in forests (94.61 g/L) and 2.94 times higher than in shrublands (176.48 g/L). Soil properties and parent material might have a more important effect on the studied variables than the different vegetation types. Furthermore, root systems and the use of tillage on crops could favor infiltration, which would tend to equalize the values of the variables analyzed; but this needs to be demonstrated in future research. The results obtained are of interest for vegetation cover and soils management in reservoirs’ catchments in Mediterranean areas. Furthermore, the current research provides an opportunity to study more specifically the origin of the sediment that reaches the reservoirs, beyond sheet and rill erosion.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.