{"title":"人工智能(AI)在护理点测试","authors":"Tahir S. Pillay , Adil I. Khan , Sedef Yenice","doi":"10.1016/j.cca.2025.120341","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of artificial intelligence (AI) into point-of-care testing (POCT) represents a transformative leap in modern healthcare, addressing critical challenges in diagnostic accuracy, workflow efficiency, and equitable access. While POCT has revolutionized decentralized care through rapid results, its potential is hindered by variability in accuracy, integration hurdles, and resource constraints. AI technologies—encompassing machine learning, deep learning, and natural language processing—offer robust solutions: convolutional neural networks improve malaria detection in sub-Saharan Africa to 95 % sensitivity, while predictive analytics reduce device downtime by 20 % in resource-limited settings. AI-driven decision support systems curtail antibiotic misuse by 40 % through real-time data synthesis, and portable AI devices enable anaemia screening in rural India with 94 % accuracy, slashing diagnostic delays from weeks to hours. Despite these advancements, challenges persist, including data privacy risks, algorithmic opacity, and infrastructural gaps in low- and middle-income countries. Explainable AI frameworks and blockchain encryption are critical to building clinician trust and ensuring regulatory compliance. Future directions emphasize the convergence of AI with Internet of Things (IoT) and blockchain for predictive diagnostics, as demonstrated by AI-IoT systems forecasting dengue outbreaks 14 days in advance. Personalized medicine, powered by genomic and wearable data integration, further underscores AI potential to tailor therapies, reducing cardiovascular events by 25 %. Realizing this vision demands interdisciplinary collaboration, ethical governance, and equitable implementation to bridge global health disparities. By harmonizing innovation with accessibility, AI-enhanced POCT emerges as a cornerstone of proactive, patient-centered healthcare, poised to democratize diagnostics and drive sustainable health equity worldwide.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"574 ","pages":"Article 120341"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence (AI) in point-of-care testing\",\"authors\":\"Tahir S. Pillay , Adil I. Khan , Sedef Yenice\",\"doi\":\"10.1016/j.cca.2025.120341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of artificial intelligence (AI) into point-of-care testing (POCT) represents a transformative leap in modern healthcare, addressing critical challenges in diagnostic accuracy, workflow efficiency, and equitable access. While POCT has revolutionized decentralized care through rapid results, its potential is hindered by variability in accuracy, integration hurdles, and resource constraints. AI technologies—encompassing machine learning, deep learning, and natural language processing—offer robust solutions: convolutional neural networks improve malaria detection in sub-Saharan Africa to 95 % sensitivity, while predictive analytics reduce device downtime by 20 % in resource-limited settings. AI-driven decision support systems curtail antibiotic misuse by 40 % through real-time data synthesis, and portable AI devices enable anaemia screening in rural India with 94 % accuracy, slashing diagnostic delays from weeks to hours. Despite these advancements, challenges persist, including data privacy risks, algorithmic opacity, and infrastructural gaps in low- and middle-income countries. Explainable AI frameworks and blockchain encryption are critical to building clinician trust and ensuring regulatory compliance. Future directions emphasize the convergence of AI with Internet of Things (IoT) and blockchain for predictive diagnostics, as demonstrated by AI-IoT systems forecasting dengue outbreaks 14 days in advance. Personalized medicine, powered by genomic and wearable data integration, further underscores AI potential to tailor therapies, reducing cardiovascular events by 25 %. Realizing this vision demands interdisciplinary collaboration, ethical governance, and equitable implementation to bridge global health disparities. By harmonizing innovation with accessibility, AI-enhanced POCT emerges as a cornerstone of proactive, patient-centered healthcare, poised to democratize diagnostics and drive sustainable health equity worldwide.</div></div>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":\"574 \",\"pages\":\"Article 120341\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009898125002207\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898125002207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Artificial intelligence (AI) in point-of-care testing
The integration of artificial intelligence (AI) into point-of-care testing (POCT) represents a transformative leap in modern healthcare, addressing critical challenges in diagnostic accuracy, workflow efficiency, and equitable access. While POCT has revolutionized decentralized care through rapid results, its potential is hindered by variability in accuracy, integration hurdles, and resource constraints. AI technologies—encompassing machine learning, deep learning, and natural language processing—offer robust solutions: convolutional neural networks improve malaria detection in sub-Saharan Africa to 95 % sensitivity, while predictive analytics reduce device downtime by 20 % in resource-limited settings. AI-driven decision support systems curtail antibiotic misuse by 40 % through real-time data synthesis, and portable AI devices enable anaemia screening in rural India with 94 % accuracy, slashing diagnostic delays from weeks to hours. Despite these advancements, challenges persist, including data privacy risks, algorithmic opacity, and infrastructural gaps in low- and middle-income countries. Explainable AI frameworks and blockchain encryption are critical to building clinician trust and ensuring regulatory compliance. Future directions emphasize the convergence of AI with Internet of Things (IoT) and blockchain for predictive diagnostics, as demonstrated by AI-IoT systems forecasting dengue outbreaks 14 days in advance. Personalized medicine, powered by genomic and wearable data integration, further underscores AI potential to tailor therapies, reducing cardiovascular events by 25 %. Realizing this vision demands interdisciplinary collaboration, ethical governance, and equitable implementation to bridge global health disparities. By harmonizing innovation with accessibility, AI-enhanced POCT emerges as a cornerstone of proactive, patient-centered healthcare, poised to democratize diagnostics and drive sustainable health equity worldwide.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.