Haiyan Wang , Jinchi Hu , Shuangyan Liu , Fei Gui , Xiaopin Sun , Rong Chen , Guanwu Yin , Xiaoming Song , Yi Yang , Yu Hong
{"title":"重组人神经素通过ERK1/2激活保护耳蜗带突触和听力功能","authors":"Haiyan Wang , Jinchi Hu , Shuangyan Liu , Fei Gui , Xiaopin Sun , Rong Chen , Guanwu Yin , Xiaoming Song , Yi Yang , Yu Hong","doi":"10.1016/j.bbrep.2025.102044","DOIUrl":null,"url":null,"abstract":"<div><div>The preservation of synaptic integrity and physiological activity is pivotal for post-traumatic auditory rehabilitation following acoustic overexposure. Neuritin, a neurotrophic factor that facilitates synapse formation, maturation, and enhanced synaptic transmission, is essential for synapse development. In this study, we established a noise-induced cochlear synaptopathy model in CBA/CaJ mice, revealing a temporal association between endogenous Neuritin expression and synaptic density. Furthermore, administration of recombinant Human Neuritin (rhNeuritin) effectively preserves synaptic density in the cochlear basal turn at 7 days and 14 days following noise exposure. Importantly, it preserves the density of functional synapses (represented by overlapping CtBP2 and GluA2 puncta) and synapse function (indicated by ABR I wave amplitudes), thus diminishing the impairment of auditory function. In addition, rhNeuritin reverses the decrease in phosphorylated extracellular signal-regulated protein kinase 1/2 (<em>p</em>-ERK1/2) levels resulting from noise exposure. By primarily preserving both the number and functionality of synapses in the basal turn, potentially via the induction of ERK1/2 phosphorylation, rhNeuritin mitigated hearing loss. These findings underscore the protective efficacy of rhNeuritin against noise-induced synaptic injury.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102044"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant human Neuritin protects cochlear ribbon synapses and hearing function via ERK1/2 activation post noise-induced injury\",\"authors\":\"Haiyan Wang , Jinchi Hu , Shuangyan Liu , Fei Gui , Xiaopin Sun , Rong Chen , Guanwu Yin , Xiaoming Song , Yi Yang , Yu Hong\",\"doi\":\"10.1016/j.bbrep.2025.102044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The preservation of synaptic integrity and physiological activity is pivotal for post-traumatic auditory rehabilitation following acoustic overexposure. Neuritin, a neurotrophic factor that facilitates synapse formation, maturation, and enhanced synaptic transmission, is essential for synapse development. In this study, we established a noise-induced cochlear synaptopathy model in CBA/CaJ mice, revealing a temporal association between endogenous Neuritin expression and synaptic density. Furthermore, administration of recombinant Human Neuritin (rhNeuritin) effectively preserves synaptic density in the cochlear basal turn at 7 days and 14 days following noise exposure. Importantly, it preserves the density of functional synapses (represented by overlapping CtBP2 and GluA2 puncta) and synapse function (indicated by ABR I wave amplitudes), thus diminishing the impairment of auditory function. In addition, rhNeuritin reverses the decrease in phosphorylated extracellular signal-regulated protein kinase 1/2 (<em>p</em>-ERK1/2) levels resulting from noise exposure. By primarily preserving both the number and functionality of synapses in the basal turn, potentially via the induction of ERK1/2 phosphorylation, rhNeuritin mitigated hearing loss. These findings underscore the protective efficacy of rhNeuritin against noise-induced synaptic injury.</div></div>\",\"PeriodicalId\":8771,\"journal\":{\"name\":\"Biochemistry and Biophysics Reports\",\"volume\":\"42 \",\"pages\":\"Article 102044\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry and Biophysics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405580825001311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recombinant human Neuritin protects cochlear ribbon synapses and hearing function via ERK1/2 activation post noise-induced injury
The preservation of synaptic integrity and physiological activity is pivotal for post-traumatic auditory rehabilitation following acoustic overexposure. Neuritin, a neurotrophic factor that facilitates synapse formation, maturation, and enhanced synaptic transmission, is essential for synapse development. In this study, we established a noise-induced cochlear synaptopathy model in CBA/CaJ mice, revealing a temporal association between endogenous Neuritin expression and synaptic density. Furthermore, administration of recombinant Human Neuritin (rhNeuritin) effectively preserves synaptic density in the cochlear basal turn at 7 days and 14 days following noise exposure. Importantly, it preserves the density of functional synapses (represented by overlapping CtBP2 and GluA2 puncta) and synapse function (indicated by ABR I wave amplitudes), thus diminishing the impairment of auditory function. In addition, rhNeuritin reverses the decrease in phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) levels resulting from noise exposure. By primarily preserving both the number and functionality of synapses in the basal turn, potentially via the induction of ERK1/2 phosphorylation, rhNeuritin mitigated hearing loss. These findings underscore the protective efficacy of rhNeuritin against noise-induced synaptic injury.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.