Jingzhao Cheng , Bei Cheng , Jingsan Xu , Jiaguo Yu , Shaowen Cao
{"title":"有机-无机s型异质结光催化剂:设计、合成、应用和挑战","authors":"Jingzhao Cheng , Bei Cheng , Jingsan Xu , Jiaguo Yu , Shaowen Cao","doi":"10.1016/j.esci.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><div>Since the concept was introduced in 2019, step-scheme (S-scheme) heterojunctions have emerged as an important subclass of heterojunction technology and attracted much attention for solar energy conversion. S-scheme heterojunctions are capable of maximizing redox ability through conferring enhanced photocatalytic performance by addressing the problem of rapid electron–hole recombination. In particular, the organic–inorganic S-scheme heterojunction (OI-SHJ) can integrate atomic long-range ordered inorganic semiconductors with tailored organic materials using diverse organic molecular building blocks and integration methods, offering brilliant prospects for innovation. Here, we review the state-of-the-art progress in OI-SHJ photocatalysts by introducing their charge transfer mechanism, design criteria, preparation approaches, and applications. We also highlight the synergistic role of organic and inorganic materials in S-scheme heterojunctions and what is understood so far about their structure–activity relationship. We conclude by summarizing the existing challenges and emphasizing the current outlook for the future development of OI-SHJ photocatalysts.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 3","pages":"Article 100354"},"PeriodicalIF":42.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic–inorganic S-scheme heterojunction photocatalysts: Design, synthesis, applications, and challenges\",\"authors\":\"Jingzhao Cheng , Bei Cheng , Jingsan Xu , Jiaguo Yu , Shaowen Cao\",\"doi\":\"10.1016/j.esci.2024.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since the concept was introduced in 2019, step-scheme (S-scheme) heterojunctions have emerged as an important subclass of heterojunction technology and attracted much attention for solar energy conversion. S-scheme heterojunctions are capable of maximizing redox ability through conferring enhanced photocatalytic performance by addressing the problem of rapid electron–hole recombination. In particular, the organic–inorganic S-scheme heterojunction (OI-SHJ) can integrate atomic long-range ordered inorganic semiconductors with tailored organic materials using diverse organic molecular building blocks and integration methods, offering brilliant prospects for innovation. Here, we review the state-of-the-art progress in OI-SHJ photocatalysts by introducing their charge transfer mechanism, design criteria, preparation approaches, and applications. We also highlight the synergistic role of organic and inorganic materials in S-scheme heterojunctions and what is understood so far about their structure–activity relationship. We conclude by summarizing the existing challenges and emphasizing the current outlook for the future development of OI-SHJ photocatalysts.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 3\",\"pages\":\"Article 100354\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724001538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Organic–inorganic S-scheme heterojunction photocatalysts: Design, synthesis, applications, and challenges
Since the concept was introduced in 2019, step-scheme (S-scheme) heterojunctions have emerged as an important subclass of heterojunction technology and attracted much attention for solar energy conversion. S-scheme heterojunctions are capable of maximizing redox ability through conferring enhanced photocatalytic performance by addressing the problem of rapid electron–hole recombination. In particular, the organic–inorganic S-scheme heterojunction (OI-SHJ) can integrate atomic long-range ordered inorganic semiconductors with tailored organic materials using diverse organic molecular building blocks and integration methods, offering brilliant prospects for innovation. Here, we review the state-of-the-art progress in OI-SHJ photocatalysts by introducing their charge transfer mechanism, design criteria, preparation approaches, and applications. We also highlight the synergistic role of organic and inorganic materials in S-scheme heterojunctions and what is understood so far about their structure–activity relationship. We conclude by summarizing the existing challenges and emphasizing the current outlook for the future development of OI-SHJ photocatalysts.