Siginamsetty Phani , Ashu Abdul , M. Krishna Siva Prasad , V. Dinesh Reddy
{"title":"MATSFT:通过微调mT5,为低资源印度语言提供基于用户查询的多语言抽象文本摘要","authors":"Siginamsetty Phani , Ashu Abdul , M. Krishna Siva Prasad , V. Dinesh Reddy","doi":"10.1016/j.aej.2025.04.031","DOIUrl":null,"url":null,"abstract":"<div><div>User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a <span><math><mi>p</mi></math></span>-value of <span><math><mo>≤</mo></math></span> 0.05 compared to other models.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 129-142"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5\",\"authors\":\"Siginamsetty Phani , Ashu Abdul , M. Krishna Siva Prasad , V. Dinesh Reddy\",\"doi\":\"10.1016/j.aej.2025.04.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a <span><math><mi>p</mi></math></span>-value of <span><math><mo>≤</mo></math></span> 0.05 compared to other models.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"127 \",\"pages\":\"Pages 129-142\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005162\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005162","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5
User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a -value of 0.05 compared to other models.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering