MATSFT:通过微调mT5,为低资源印度语言提供基于用户查询的多语言抽象文本摘要

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Siginamsetty Phani , Ashu Abdul , M. Krishna Siva Prasad , V. Dinesh Reddy
{"title":"MATSFT:通过微调mT5,为低资源印度语言提供基于用户查询的多语言抽象文本摘要","authors":"Siginamsetty Phani ,&nbsp;Ashu Abdul ,&nbsp;M. Krishna Siva Prasad ,&nbsp;V. Dinesh Reddy","doi":"10.1016/j.aej.2025.04.031","DOIUrl":null,"url":null,"abstract":"<div><div>User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a <span><math><mi>p</mi></math></span>-value of <span><math><mo>≤</mo></math></span> 0.05 compared to other models.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"127 ","pages":"Pages 129-142"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5\",\"authors\":\"Siginamsetty Phani ,&nbsp;Ashu Abdul ,&nbsp;M. Krishna Siva Prasad ,&nbsp;V. Dinesh Reddy\",\"doi\":\"10.1016/j.aej.2025.04.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a <span><math><mi>p</mi></math></span>-value of <span><math><mo>≤</mo></math></span> 0.05 compared to other models.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"127 \",\"pages\":\"Pages 129-142\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825005162\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825005162","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于用户查询的摘要是自然语言处理中一个具有挑战性的研究领域。然而,现有的方法难以有效地管理用户查询和输入文档之间复杂的长距离语义关系。本文通过对多语言预训练文本到文本(mT5)转换模型(MATSFT)进行微调,提出了一种针对印度低资源语言的基于用户查询的多语言抽象文本摘要方法。MATSFT采用共享编码器-解码器架构中的共同关注机制,与mT5模型一起跨多种低资源语言传递知识。共同关注捕获跨语言依赖,这允许模型理解不同语言之间的关系和细微差别。大多数多语言摘要数据集中于主要的全球语言,如英语、法语和西班牙语。为了解决LRLs中的挑战,我们通过从BBC新闻网站提取数据,创建了一个由七个LRLs和英语组成的印度语言数据集。我们使用ROUGE度量和语言无关的目标总结评估度量来评估MATSFT的性能。实验结果表明,MATSFT在IL数据集上优于单语转换模型、预训练MTM、mT5模型、NLI模型、IndicBART、mBART25和mBART50。统计配对t检验表明,与其他模型相比,MATSFT得到了显著改善,p值≤0.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5

MATSFT: User query-based multilingual abstractive text summarization for low resource Indian languages by fine-tuning mT5
User query-based summarization is a challenging research area of natural language processing. However, the existing approaches struggle to effectively manage the intricate long-distance semantic relationships between user queries and input documents. This paper introduces a user query-based multilingual abstractive text summarization approach for the Indian low-resource languages by fine-tuning the multilingual pre-trained text-to-text (mT5) transformer model (MATSFT). The MATSFT employs a co-attention mechanism within a shared encoder–decoder architecture alongside the mT5 model to transfer knowledge across multiple low-resource languages. The Co-attention captures cross-lingual dependencies, which allows the model to understand the relationships and nuances between the different languages. Most multilingual summarization datasets focus on major global languages like English, French, and Spanish. To address the challenges in the LRLs, we created an Indian language dataset, comprising seven LRLs and the English language, by extracting data from the BBC news website. We evaluate the performance of the MATSFT using the ROUGE metric and a language-agnostic target summary evaluation metric. Experimental results show that MATSFT outperforms the monolingual transformer model, pre-trained MTM, mT5 model, NLI model, IndicBART, mBART25, and mBART50 on the IL dataset. The statistical paired t-test indicates that the MATSFT achieves a significant improvement with a p-value of 0.05 compared to other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信