利用横向色散优化微流体阱阵列效率

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nicolas Ruyssen , Gabriel Fina , Rachele Allena , Marie-Caroline Jullien , Jacques Fattaccioli
{"title":"利用横向色散优化微流体阱阵列效率","authors":"Nicolas Ruyssen ,&nbsp;Gabriel Fina ,&nbsp;Rachele Allena ,&nbsp;Marie-Caroline Jullien ,&nbsp;Jacques Fattaccioli","doi":"10.1016/j.compfluid.2025.106643","DOIUrl":null,"url":null,"abstract":"<div><div>Microfluidic trapping arrays have proven to be efficient tools for various applications that require working at the single-cell level, such as cell–cell communication or fusion. Although several hydrodynamic trapping devices have already been optimised, two-dimensional (2D) single-layer trapping arrays with high trap densities remain partially inefficient. Specifically, many traps remain empty, even after prolonged injection, which drastically reduces the number of samples available for post-treatment. These unfilled traps result from the symmetrical nature of the flow around the traps, and breaking this symmetry enhances capture efficiency. In this study, we use a numerical approach to show that optimal geometries can significantly increase filling efficiency and a preliminary experimental test confirming our approach is provided. We show that these improvements are achieved by promoting lateral dispersion of particles, facilitated either through an optimised oblique flow or by introducing disorder into the spatial arrangement of traps without specific inlet/outlet adjustment.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"297 ","pages":"Article 106643"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using lateral dispersion to optimise microfluidic trap array efficiency\",\"authors\":\"Nicolas Ruyssen ,&nbsp;Gabriel Fina ,&nbsp;Rachele Allena ,&nbsp;Marie-Caroline Jullien ,&nbsp;Jacques Fattaccioli\",\"doi\":\"10.1016/j.compfluid.2025.106643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microfluidic trapping arrays have proven to be efficient tools for various applications that require working at the single-cell level, such as cell–cell communication or fusion. Although several hydrodynamic trapping devices have already been optimised, two-dimensional (2D) single-layer trapping arrays with high trap densities remain partially inefficient. Specifically, many traps remain empty, even after prolonged injection, which drastically reduces the number of samples available for post-treatment. These unfilled traps result from the symmetrical nature of the flow around the traps, and breaking this symmetry enhances capture efficiency. In this study, we use a numerical approach to show that optimal geometries can significantly increase filling efficiency and a preliminary experimental test confirming our approach is provided. We show that these improvements are achieved by promoting lateral dispersion of particles, facilitated either through an optimised oblique flow or by introducing disorder into the spatial arrangement of traps without specific inlet/outlet adjustment.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"297 \",\"pages\":\"Article 106643\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001033\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

微流体捕获阵列已被证明是需要在单细胞水平上工作的各种应用的有效工具,例如细胞-细胞通信或融合。尽管一些流体动力学捕获装置已经得到了优化,但具有高捕获密度的二维(2D)单层捕获阵列仍然部分低效。具体来说,即使在长时间注射后,许多陷阱仍然是空的,这大大减少了可用于后处理的样品数量。这些未填充的圈闭是由于圈闭周围流动的对称性造成的,打破这种对称性可以提高捕获效率。在本研究中,我们使用数值方法来证明最佳几何形状可以显着提高填充效率,并提供了初步的实验测试来证实我们的方法。我们表明,这些改进是通过促进颗粒的横向分散来实现的,这可以通过优化的斜流来促进,也可以通过在没有特定入口/出口调整的情况下,在陷阱的空间安排中引入无序来促进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using lateral dispersion to optimise microfluidic trap array efficiency
Microfluidic trapping arrays have proven to be efficient tools for various applications that require working at the single-cell level, such as cell–cell communication or fusion. Although several hydrodynamic trapping devices have already been optimised, two-dimensional (2D) single-layer trapping arrays with high trap densities remain partially inefficient. Specifically, many traps remain empty, even after prolonged injection, which drastically reduces the number of samples available for post-treatment. These unfilled traps result from the symmetrical nature of the flow around the traps, and breaking this symmetry enhances capture efficiency. In this study, we use a numerical approach to show that optimal geometries can significantly increase filling efficiency and a preliminary experimental test confirming our approach is provided. We show that these improvements are achieved by promoting lateral dispersion of particles, facilitated either through an optimised oblique flow or by introducing disorder into the spatial arrangement of traps without specific inlet/outlet adjustment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信