凹微透镜辅助光等离子体在金纳米孔中的捕获

IF 2.2 3区 物理与天体物理 Q2 OPTICS
YiLu Chen , Yan Zhao , Li Wang , Yingzhou Huang
{"title":"凹微透镜辅助光等离子体在金纳米孔中的捕获","authors":"YiLu Chen ,&nbsp;Yan Zhao ,&nbsp;Li Wang ,&nbsp;Yingzhou Huang","doi":"10.1016/j.optcom.2025.131971","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing the dielectric microstructure to confine optical energy, this work significantly enhances localized surface plasmon resonance (LSPR) effects for superior light-matter interaction. This study introduces an optoplasmonic tweezer integrated with a concave dielectric microlens and the metal thin-film system, engineered for efficient nanoparticle trapping and dynamic manipulation. Using finite element analysis, we optimized the size and spacing of Au nanoparticles (AuNPs) on the thin film to maximize the electric field intensity in the nanohole on the Au film. The structural parameters of the designed concave microlens were also investigated to optimize light confinement while enabling fluid transportation function. The results demonstrate that the optoplasmonic tweezer we proposed can achieve an approximately 400-fold enhancement of the electric field within the Au nanohole, exhibiting exceptional performance in trapping nanoparticles in a fluid. We propose an optoplasmonic structure composed of concave microlens and AuNPs, which can enable simultaneous integration both microfluidic channels and trap nanoparticles, providing a new idea for trapping nanoparticles in fluids.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"588 ","pages":"Article 131971"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concave microlens assisted optoplasmonic trapping in Au nanohole\",\"authors\":\"YiLu Chen ,&nbsp;Yan Zhao ,&nbsp;Li Wang ,&nbsp;Yingzhou Huang\",\"doi\":\"10.1016/j.optcom.2025.131971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilizing the dielectric microstructure to confine optical energy, this work significantly enhances localized surface plasmon resonance (LSPR) effects for superior light-matter interaction. This study introduces an optoplasmonic tweezer integrated with a concave dielectric microlens and the metal thin-film system, engineered for efficient nanoparticle trapping and dynamic manipulation. Using finite element analysis, we optimized the size and spacing of Au nanoparticles (AuNPs) on the thin film to maximize the electric field intensity in the nanohole on the Au film. The structural parameters of the designed concave microlens were also investigated to optimize light confinement while enabling fluid transportation function. The results demonstrate that the optoplasmonic tweezer we proposed can achieve an approximately 400-fold enhancement of the electric field within the Au nanohole, exhibiting exceptional performance in trapping nanoparticles in a fluid. We propose an optoplasmonic structure composed of concave microlens and AuNPs, which can enable simultaneous integration both microfluidic channels and trap nanoparticles, providing a new idea for trapping nanoparticles in fluids.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"588 \",\"pages\":\"Article 131971\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401825004997\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825004997","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

利用介电微观结构来限制光能,本研究显著增强了局部表面等离子体共振(LSPR)效应,实现了优越的光-物质相互作用。本研究介绍了一种集成了凹介质微透镜和金属薄膜系统的光等离子体镊子,用于高效的纳米粒子捕获和动态操作。通过有限元分析,我们优化了Au纳米颗粒(AuNPs)在薄膜上的尺寸和间距,以最大限度地提高Au薄膜上纳米孔的电场强度。研究了所设计的凹微透镜的结构参数,以优化光约束,同时实现流体输运功能。结果表明,我们提出的光等离子体镊子可以在金纳米孔内实现约400倍的电场增强,在捕获流体中的纳米颗粒方面表现出优异的性能。我们提出了一种由凹微透镜和AuNPs组成的光等离子体结构,可以同时集成微流体通道和捕获纳米颗粒,为捕获流体中的纳米颗粒提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concave microlens assisted optoplasmonic trapping in Au nanohole
Utilizing the dielectric microstructure to confine optical energy, this work significantly enhances localized surface plasmon resonance (LSPR) effects for superior light-matter interaction. This study introduces an optoplasmonic tweezer integrated with a concave dielectric microlens and the metal thin-film system, engineered for efficient nanoparticle trapping and dynamic manipulation. Using finite element analysis, we optimized the size and spacing of Au nanoparticles (AuNPs) on the thin film to maximize the electric field intensity in the nanohole on the Au film. The structural parameters of the designed concave microlens were also investigated to optimize light confinement while enabling fluid transportation function. The results demonstrate that the optoplasmonic tweezer we proposed can achieve an approximately 400-fold enhancement of the electric field within the Au nanohole, exhibiting exceptional performance in trapping nanoparticles in a fluid. We propose an optoplasmonic structure composed of concave microlens and AuNPs, which can enable simultaneous integration both microfluidic channels and trap nanoparticles, providing a new idea for trapping nanoparticles in fluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信