{"title":"空气污染物与肺再生:对肺干细胞命运的影响","authors":"Yuzhu Wu , Yu Li , Feifei Feng , Huaiyong Chen","doi":"10.1016/j.envint.2025.109525","DOIUrl":null,"url":null,"abstract":"<div><div>Inhalable airborne pollutants, including particulate matter, ozone, cigarette smoke, and emerging microparticles and nanoparticles can initiate or exacerbate various lung diseases. Their toxicological impact depends not only on their chemical composition, but also on the host’s capacity for clearance and post-injury repair mechanisms. Studies have identified region-specific stem cells within the lung epithelial-mucosal barrier, which are pivotal for mucosal repair after damage. This review delineates the roles of airway and alveolar key stem cells in lung epithelial mucosal repair, details how traditional and emerging airborne pollutants affect their regenerative capabilities. Additionally, it discusses the transformative contributions of organoids and single-cell sequencing technologies to advance our understanding of how inhaled pollutants affect lung tissue toxicity. A tissue regeneration perspective on the interplay between inhaled pollutants and lung stem cells is crucial for developing comprehensive strategies to prevent and control lung diseases associated with exposure to airborne pollutants.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"199 ","pages":"Article 109525"},"PeriodicalIF":10.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air pollutants and lung regeneration: impact on the fate of lung stem cells\",\"authors\":\"Yuzhu Wu , Yu Li , Feifei Feng , Huaiyong Chen\",\"doi\":\"10.1016/j.envint.2025.109525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inhalable airborne pollutants, including particulate matter, ozone, cigarette smoke, and emerging microparticles and nanoparticles can initiate or exacerbate various lung diseases. Their toxicological impact depends not only on their chemical composition, but also on the host’s capacity for clearance and post-injury repair mechanisms. Studies have identified region-specific stem cells within the lung epithelial-mucosal barrier, which are pivotal for mucosal repair after damage. This review delineates the roles of airway and alveolar key stem cells in lung epithelial mucosal repair, details how traditional and emerging airborne pollutants affect their regenerative capabilities. Additionally, it discusses the transformative contributions of organoids and single-cell sequencing technologies to advance our understanding of how inhaled pollutants affect lung tissue toxicity. A tissue regeneration perspective on the interplay between inhaled pollutants and lung stem cells is crucial for developing comprehensive strategies to prevent and control lung diseases associated with exposure to airborne pollutants.</div></div>\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"199 \",\"pages\":\"Article 109525\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0160412025002764\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025002764","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Air pollutants and lung regeneration: impact on the fate of lung stem cells
Inhalable airborne pollutants, including particulate matter, ozone, cigarette smoke, and emerging microparticles and nanoparticles can initiate or exacerbate various lung diseases. Their toxicological impact depends not only on their chemical composition, but also on the host’s capacity for clearance and post-injury repair mechanisms. Studies have identified region-specific stem cells within the lung epithelial-mucosal barrier, which are pivotal for mucosal repair after damage. This review delineates the roles of airway and alveolar key stem cells in lung epithelial mucosal repair, details how traditional and emerging airborne pollutants affect their regenerative capabilities. Additionally, it discusses the transformative contributions of organoids and single-cell sequencing technologies to advance our understanding of how inhaled pollutants affect lung tissue toxicity. A tissue regeneration perspective on the interplay between inhaled pollutants and lung stem cells is crucial for developing comprehensive strategies to prevent and control lung diseases associated with exposure to airborne pollutants.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.