Wanci He, Zhengbao Zhao, Guoqing Zhu, Shuya Yang, Abdul Manan, Fang He, Lianghua Chen, Tiantian Lin
{"title":"氮沉降的增加可能通过增强对专门性和通用性食草动物的抗性而使雄性杨树优于雌性同种杨树","authors":"Wanci He, Zhengbao Zhao, Guoqing Zhu, Shuya Yang, Abdul Manan, Fang He, Lianghua Chen, Tiantian Lin","doi":"10.1007/s10340-025-01899-x","DOIUrl":null,"url":null,"abstract":"<p>The deposition of atmospheric nitrogen has globally increased and has interfered with plant growth and resistance to herbivores. Previous studies have shown that numerous dioecious plant species exhibit sex-specific responses in growth and tolerance to increased atmospheric nitrogen deposition. However, whether these changes lead to sexual differences in herbivore resistance and subsequent intersexual competition between male and female conspecifics remains unknown. Here, we used female and male siblings of <i>Populus deltoides</i> to investigate the effect of simulated nitrogen deposition on herbivore resistance and competitive ability of male and female plant conspecifics under controlled and field conditions. We showed that simulated nitrogen deposition significantly increased the growth of both plant sexes, with females outperforming males. The herbivore feeding bioassays demonstrated that simulated nitrogen deposition decreased the resistance of both plant sexes to generalist and specialist herbivores, with female plants exhibiting lower resistance than males. This could be attributed to decreased levels of leaf structural defense in females in response to simulated nitrogen deposition. A short-term competition test in the climate chamber revealed that simulated nitrogen deposition increased the competitive ability of females over males, whereas herbivore feeding reversed this advantage. A long-term competition experiment in the field further confirmed that male plants may benefit from increased atmospheric nitrogen deposition through enhanced herbivore resistance and intersexual competition compared to their female conspecifics. The findings provide potential implications for the selection of suitable sex of dioecious plants during forestation in natural habitats experiencing high levels of atmospheric nitrogen deposition.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"8 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increased nitrogen deposition may benefit male poplars over female conspecifics through enhanced resistance to both specialist and generalist herbivores\",\"authors\":\"Wanci He, Zhengbao Zhao, Guoqing Zhu, Shuya Yang, Abdul Manan, Fang He, Lianghua Chen, Tiantian Lin\",\"doi\":\"10.1007/s10340-025-01899-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The deposition of atmospheric nitrogen has globally increased and has interfered with plant growth and resistance to herbivores. Previous studies have shown that numerous dioecious plant species exhibit sex-specific responses in growth and tolerance to increased atmospheric nitrogen deposition. However, whether these changes lead to sexual differences in herbivore resistance and subsequent intersexual competition between male and female conspecifics remains unknown. Here, we used female and male siblings of <i>Populus deltoides</i> to investigate the effect of simulated nitrogen deposition on herbivore resistance and competitive ability of male and female plant conspecifics under controlled and field conditions. We showed that simulated nitrogen deposition significantly increased the growth of both plant sexes, with females outperforming males. The herbivore feeding bioassays demonstrated that simulated nitrogen deposition decreased the resistance of both plant sexes to generalist and specialist herbivores, with female plants exhibiting lower resistance than males. This could be attributed to decreased levels of leaf structural defense in females in response to simulated nitrogen deposition. A short-term competition test in the climate chamber revealed that simulated nitrogen deposition increased the competitive ability of females over males, whereas herbivore feeding reversed this advantage. A long-term competition experiment in the field further confirmed that male plants may benefit from increased atmospheric nitrogen deposition through enhanced herbivore resistance and intersexual competition compared to their female conspecifics. The findings provide potential implications for the selection of suitable sex of dioecious plants during forestation in natural habitats experiencing high levels of atmospheric nitrogen deposition.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-025-01899-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01899-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Increased nitrogen deposition may benefit male poplars over female conspecifics through enhanced resistance to both specialist and generalist herbivores
The deposition of atmospheric nitrogen has globally increased and has interfered with plant growth and resistance to herbivores. Previous studies have shown that numerous dioecious plant species exhibit sex-specific responses in growth and tolerance to increased atmospheric nitrogen deposition. However, whether these changes lead to sexual differences in herbivore resistance and subsequent intersexual competition between male and female conspecifics remains unknown. Here, we used female and male siblings of Populus deltoides to investigate the effect of simulated nitrogen deposition on herbivore resistance and competitive ability of male and female plant conspecifics under controlled and field conditions. We showed that simulated nitrogen deposition significantly increased the growth of both plant sexes, with females outperforming males. The herbivore feeding bioassays demonstrated that simulated nitrogen deposition decreased the resistance of both plant sexes to generalist and specialist herbivores, with female plants exhibiting lower resistance than males. This could be attributed to decreased levels of leaf structural defense in females in response to simulated nitrogen deposition. A short-term competition test in the climate chamber revealed that simulated nitrogen deposition increased the competitive ability of females over males, whereas herbivore feeding reversed this advantage. A long-term competition experiment in the field further confirmed that male plants may benefit from increased atmospheric nitrogen deposition through enhanced herbivore resistance and intersexual competition compared to their female conspecifics. The findings provide potential implications for the selection of suitable sex of dioecious plants during forestation in natural habitats experiencing high levels of atmospheric nitrogen deposition.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.