利用聚合物电偶极子效应调制双电层提高准固态钠金属电池的稳定性

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiyong Li, Jianxiong Chen, Qiu Fang, Jialong Fu, Yi Ren, Xuefeng Wang, Xin Guo
{"title":"利用聚合物电偶极子效应调制双电层提高准固态钠金属电池的稳定性","authors":"Zhiyong Li,&nbsp;Jianxiong Chen,&nbsp;Qiu Fang,&nbsp;Jialong Fu,&nbsp;Yi Ren,&nbsp;Xuefeng Wang,&nbsp;Xin Guo","doi":"10.1002/anie.202505509","DOIUrl":null,"url":null,"abstract":"<p>The interfacial instability of Na metal anodes poses a significant barrier to the practical applications of sodium metal batteries. According to electric double layer (EDL) theory, the potential difference in the Helmholtz layer critically affects electrochemical reactions at the electrode/electrolyte interfaces, which governs the solid electrolyte interphase (SEI) composition and the Na deposition process. Herein, we leverage the electric dipole effect of polymers, formed via in situ polymerization of butyl acrylate (BA), which preferentially adsorbs on the Na metal surface, to modulate the conformation of the EDL. Molecular dynamics simulations reveal that poly-BA facilitates the formation of a more compressed diffuse layer and reduces the potential difference in the Helmholtz layer. This compressed EDL with the change of species derives homogeneous SEI, enabling reversible Na plating/stripping. As a result, the poly-BA quasi-solid electrolyte extends the lifespan of the Na||Na cell to 3500 h at 0.1 mA cm⁻<sup>2</sup>. Quasi-solid-state Na||Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cells maintain stable cycling over 1500 cycles, with a capacity retention of 87.6% at 5 C. Our findings indicate that modulating the EDL structure via the electric dipole effect of polymers enables uniform Na deposition, offering a promising strategy for designing electrolytes for practical quasi-solid-state sodium metal batteries.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 29","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Electric Double Layers via Polymer Electric Dipole Effects to Enhance Stability in Quasi-Solid-State Sodium Metal Batteries\",\"authors\":\"Zhiyong Li,&nbsp;Jianxiong Chen,&nbsp;Qiu Fang,&nbsp;Jialong Fu,&nbsp;Yi Ren,&nbsp;Xuefeng Wang,&nbsp;Xin Guo\",\"doi\":\"10.1002/anie.202505509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interfacial instability of Na metal anodes poses a significant barrier to the practical applications of sodium metal batteries. According to electric double layer (EDL) theory, the potential difference in the Helmholtz layer critically affects electrochemical reactions at the electrode/electrolyte interfaces, which governs the solid electrolyte interphase (SEI) composition and the Na deposition process. Herein, we leverage the electric dipole effect of polymers, formed via in situ polymerization of butyl acrylate (BA), which preferentially adsorbs on the Na metal surface, to modulate the conformation of the EDL. Molecular dynamics simulations reveal that poly-BA facilitates the formation of a more compressed diffuse layer and reduces the potential difference in the Helmholtz layer. This compressed EDL with the change of species derives homogeneous SEI, enabling reversible Na plating/stripping. As a result, the poly-BA quasi-solid electrolyte extends the lifespan of the Na||Na cell to 3500 h at 0.1 mA cm⁻<sup>2</sup>. Quasi-solid-state Na||Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cells maintain stable cycling over 1500 cycles, with a capacity retention of 87.6% at 5 C. Our findings indicate that modulating the EDL structure via the electric dipole effect of polymers enables uniform Na deposition, offering a promising strategy for designing electrolytes for practical quasi-solid-state sodium metal batteries.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 29\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505509\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505509","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属钠阳极的界面不稳定性是制约金属钠电池实际应用的重要因素。根据双电层(EDL)理论,亥姆霍兹层的电位差对电极/电解质界面的电化学反应有重要影响,它决定了固体电解质界面相(SEI)的组成和Na的沉积过程。在这里,我们利用聚合物的电偶极子效应,通过丙烯酸丁酯(BA)的原位聚合形成的聚合物,优先吸附在Na金属表面,来调节EDL的构象。分子动力学模拟表明,聚BA有助于形成更压缩的扩散层,并减少了亥姆霍兹层的电位差。这种压缩的EDL随着物质的变化而产生均匀的SEI,从而实现可逆的Na电镀/剥离。结果,聚BA准固体电解质在0.1 mA cm−2下将Na||Na电池的寿命延长至3500小时。准固态Na||Na3V2(PO4)3电池在1500次循环中保持稳定,在5℃下的容量保持率为87.6%。我们的研究结果表明,通过聚合物的电偶极子效应调节EDL结构可以实现均匀的Na沉积,为设计实用的准固态钠金属电池的电解质提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating Electric Double Layers via Polymer Electric Dipole Effects to Enhance Stability in Quasi-Solid-State Sodium Metal Batteries

Modulating Electric Double Layers via Polymer Electric Dipole Effects to Enhance Stability in Quasi-Solid-State Sodium Metal Batteries

The interfacial instability of Na metal anodes poses a significant barrier to the practical applications of sodium metal batteries. According to electric double layer (EDL) theory, the potential difference in the Helmholtz layer critically affects electrochemical reactions at the electrode/electrolyte interfaces, which governs the solid electrolyte interphase (SEI) composition and the Na deposition process. Herein, we leverage the electric dipole effect of polymers, formed via in situ polymerization of butyl acrylate (BA), which preferentially adsorbs on the Na metal surface, to modulate the conformation of the EDL. Molecular dynamics simulations reveal that poly-BA facilitates the formation of a more compressed diffuse layer and reduces the potential difference in the Helmholtz layer. This compressed EDL with the change of species derives homogeneous SEI, enabling reversible Na plating/stripping. As a result, the poly-BA quasi-solid electrolyte extends the lifespan of the Na||Na cell to 3500 h at 0.1 mA cm⁻2. Quasi-solid-state Na||Na3V2(PO4)3 cells maintain stable cycling over 1500 cycles, with a capacity retention of 87.6% at 5 C. Our findings indicate that modulating the EDL structure via the electric dipole effect of polymers enables uniform Na deposition, offering a promising strategy for designing electrolytes for practical quasi-solid-state sodium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信