严格满足路径约束的动态优化内逼近算法

IF 7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jun Fu;Lizhong Jiang
{"title":"严格满足路径约束的动态优化内逼近算法","authors":"Jun Fu;Lizhong Jiang","doi":"10.1109/TAC.2025.3568559","DOIUrl":null,"url":null,"abstract":"An inner approximation algorithm is proposed for path-constrained dynamic optimization (PCDO) by iteratively solving restrictions of PCDO (RPCDO). First, an upper bound function of the path constraint is designed based on interval analysis theory, which is utilized to construct RPCDO. Second, the algorithm is proposed based on iteratively approximating PCDO by dividing either all the time subintervals if RPCDO is infeasible or the active time subintervals if its solution does not satisfy the karush-kuhn-tucker (KKT) conditions of PCDO. The algorithm locates a KKT point of PCDO with specified tolerances while strictly satisfying the path constraint. Third, the finite convergence of the algorithm is proved theoretically. Finally, the numerical experiments show the effectiveness of the algorithm in terms of the computational time and strict satisfaction of the path constraint.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"70 10","pages":"7039-7046"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Inner Approximation Algorithm for Dynamic Optimization With Strict Satisfaction of Path Constraints\",\"authors\":\"Jun Fu;Lizhong Jiang\",\"doi\":\"10.1109/TAC.2025.3568559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inner approximation algorithm is proposed for path-constrained dynamic optimization (PCDO) by iteratively solving restrictions of PCDO (RPCDO). First, an upper bound function of the path constraint is designed based on interval analysis theory, which is utilized to construct RPCDO. Second, the algorithm is proposed based on iteratively approximating PCDO by dividing either all the time subintervals if RPCDO is infeasible or the active time subintervals if its solution does not satisfy the karush-kuhn-tucker (KKT) conditions of PCDO. The algorithm locates a KKT point of PCDO with specified tolerances while strictly satisfying the path constraint. Third, the finite convergence of the algorithm is proved theoretically. Finally, the numerical experiments show the effectiveness of the algorithm in terms of the computational time and strict satisfaction of the path constraint.\",\"PeriodicalId\":13201,\"journal\":{\"name\":\"IEEE Transactions on Automatic Control\",\"volume\":\"70 10\",\"pages\":\"7039-7046\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Automatic Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10994411/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10994411/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

通过迭代求解路径约束动态优化(PCDO)的约束条件,提出了一种求解路径约束动态优化的内逼近算法。首先,基于区间分析理论设计路径约束的上界函数,利用该函数构造RPCDO;其次,提出了基于迭代逼近PCDO的算法,如果RPCDO不可行,则将所有时间子区间除掉,如果其解不满足PCDO的karush-kuhn-tucker (KKT)条件,则将有效时间子区间除掉。该算法在严格满足路径约束的情况下,对给定公差的PCDO的KKT点进行定位。第三,从理论上证明了算法的有限收敛性。最后,通过数值实验验证了该算法在计算时间和严格满足路径约束方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Inner Approximation Algorithm for Dynamic Optimization With Strict Satisfaction of Path Constraints
An inner approximation algorithm is proposed for path-constrained dynamic optimization (PCDO) by iteratively solving restrictions of PCDO (RPCDO). First, an upper bound function of the path constraint is designed based on interval analysis theory, which is utilized to construct RPCDO. Second, the algorithm is proposed based on iteratively approximating PCDO by dividing either all the time subintervals if RPCDO is infeasible or the active time subintervals if its solution does not satisfy the karush-kuhn-tucker (KKT) conditions of PCDO. The algorithm locates a KKT point of PCDO with specified tolerances while strictly satisfying the path constraint. Third, the finite convergence of the algorithm is proved theoretically. Finally, the numerical experiments show the effectiveness of the algorithm in terms of the computational time and strict satisfaction of the path constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Automatic Control
IEEE Transactions on Automatic Control 工程技术-工程:电子与电气
CiteScore
11.30
自引率
5.90%
发文量
824
审稿时长
9 months
期刊介绍: In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered: 1) Papers: Presentation of significant research, development, or application of control concepts. 2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions. In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信