Vincent Loreau, Wouter H. Koolhaas, Eunice HoYee Chan, Paul De Boissier, Nicolas Brouilly, Sabina Avosani, Aditya Sane, Christophe Pitaval, Stefanie Reiter, Nuno Miguel Luis, Pierre Mangeol, Anne C. von Philipsborn, Jean-François Rupprecht, Dirk Görlich, Bianca H. Habermann, Frank Schnorrer
{"title":"依赖于titin的生物力学反馈使肌节适应昆虫的特殊肌肉功能","authors":"Vincent Loreau, Wouter H. Koolhaas, Eunice HoYee Chan, Paul De Boissier, Nicolas Brouilly, Sabina Avosani, Aditya Sane, Christophe Pitaval, Stefanie Reiter, Nuno Miguel Luis, Pierre Mangeol, Anne C. von Philipsborn, Jean-François Rupprecht, Dirk Görlich, Bianca H. Habermann, Frank Schnorrer","doi":"10.1126/sciadv.ads8716","DOIUrl":null,"url":null,"abstract":"<div >Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type–specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads8716","citationCount":"0","resultStr":"{\"title\":\"Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects\",\"authors\":\"Vincent Loreau, Wouter H. Koolhaas, Eunice HoYee Chan, Paul De Boissier, Nicolas Brouilly, Sabina Avosani, Aditya Sane, Christophe Pitaval, Stefanie Reiter, Nuno Miguel Luis, Pierre Mangeol, Anne C. von Philipsborn, Jean-François Rupprecht, Dirk Görlich, Bianca H. Habermann, Frank Schnorrer\",\"doi\":\"10.1126/sciadv.ads8716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type–specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads8716\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads8716\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads8716","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects
Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type–specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.