依赖于titin的生物力学反馈使肌节适应昆虫的特殊肌肉功能

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Vincent Loreau, Wouter H. Koolhaas, Eunice HoYee Chan, Paul De Boissier, Nicolas Brouilly, Sabina Avosani, Aditya Sane, Christophe Pitaval, Stefanie Reiter, Nuno Miguel Luis, Pierre Mangeol, Anne C. von Philipsborn, Jean-François Rupprecht, Dirk Görlich, Bianca H. Habermann, Frank Schnorrer
{"title":"依赖于titin的生物力学反馈使肌节适应昆虫的特殊肌肉功能","authors":"Vincent Loreau,&nbsp;Wouter H. Koolhaas,&nbsp;Eunice HoYee Chan,&nbsp;Paul De Boissier,&nbsp;Nicolas Brouilly,&nbsp;Sabina Avosani,&nbsp;Aditya Sane,&nbsp;Christophe Pitaval,&nbsp;Stefanie Reiter,&nbsp;Nuno Miguel Luis,&nbsp;Pierre Mangeol,&nbsp;Anne C. von Philipsborn,&nbsp;Jean-François Rupprecht,&nbsp;Dirk Görlich,&nbsp;Bianca H. Habermann,&nbsp;Frank Schnorrer","doi":"10.1126/sciadv.ads8716","DOIUrl":null,"url":null,"abstract":"<div >Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type–specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads8716","citationCount":"0","resultStr":"{\"title\":\"Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects\",\"authors\":\"Vincent Loreau,&nbsp;Wouter H. Koolhaas,&nbsp;Eunice HoYee Chan,&nbsp;Paul De Boissier,&nbsp;Nicolas Brouilly,&nbsp;Sabina Avosani,&nbsp;Aditya Sane,&nbsp;Christophe Pitaval,&nbsp;Stefanie Reiter,&nbsp;Nuno Miguel Luis,&nbsp;Pierre Mangeol,&nbsp;Anne C. von Philipsborn,&nbsp;Jean-François Rupprecht,&nbsp;Dirk Görlich,&nbsp;Bianca H. Habermann,&nbsp;Frank Schnorrer\",\"doi\":\"10.1126/sciadv.ads8716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type–specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads8716\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads8716\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads8716","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

肌节是使动物能够运动的普遍的肌肉收缩单位。昆虫的肌肉表现出显著的功能多样性:在飞行、行走和爬行时,它们以极其不同的收缩频率(范围从~1到1000赫兹)和幅度运作。这是令人困惑的,因为肌瘤本质上是由相同的肌动蛋白-肌球蛋白组成的。在这里,我们讨论不同功能的肌节是如何形成的。我们发现巨蛋白titin和发育收缩性的调控是肌节特化的关键。I-band titin以肌肉类型特异性的方式跨越并决定肌体I-band的长度。出乎意料的是,I-band titin也通过肌凝蛋白收缩调节的反馈机制来控制产生力的肌凝蛋白丝的长度。我们提出了一个模型,如何在昆虫的肌节专门化是调整,为该模型提供证据,并讨论其有效性超越昆虫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects

Titin-dependent biomechanical feedback tailors sarcomeres to specialized muscle functions in insects
Sarcomeres are the universal contractile units of muscles that enable animals to move. Insect muscles display a remarkable functional diversity: they operate at extremely different contraction frequencies (ranging from ~1 to 1000 hertz) and amplitudes during flying, walking, and crawling. This is puzzling because sarcomeres are built from essentially the same actin-myosin components. Here, we address how functionally different sarcomeres are made. We show that the giant protein titin and the regulation of developmental contractility are key for the sarcomere specializations. I-band titin spans and determines the length of the sarcomeric I-band in a muscle type–specific manner. Unexpectedly, I-band titin also rules the length of the force-generating myosin filament using a feedback mechanism that is modulated by myosin contractility. We propose a model of how sarcomere specializations in insects are tuned, provide evidence for this model, and discuss its validity beyond insects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信