红外铁电调制半导体单层的光发射

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dong Seob Kim, Chengxin Xiao, Roy C. Dominguez, Zhida Liu, Hamza Abudayyeh, Kyoungpyo Lee, Rigo Mayorga-Luna, Hyunsue Kim, Kenji Watanabe, Takashi Taniguchi, Chih-Kang Shih, Yoichi Miyahara, Wang Yao, Xiaoqin Li
{"title":"红外铁电调制半导体单层的光发射","authors":"Dong Seob Kim,&nbsp;Chengxin Xiao,&nbsp;Roy C. Dominguez,&nbsp;Zhida Liu,&nbsp;Hamza Abudayyeh,&nbsp;Kyoungpyo Lee,&nbsp;Rigo Mayorga-Luna,&nbsp;Hyunsue Kim,&nbsp;Kenji Watanabe,&nbsp;Takashi Taniguchi,&nbsp;Chih-Kang Shih,&nbsp;Yoichi Miyahara,&nbsp;Wang Yao,&nbsp;Xiaoqin Li","doi":"10.1126/sciadv.adt7789","DOIUrl":null,"url":null,"abstract":"<div >Semiconductor moiré superlattices, characterized by their periodic spatial light emission, unveil a new paradigm of engineered photonic materials. Here, we show that ferroelectric moiré domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe<sub>2</sub> monolayer. The electrostatic potential at the surface of the t-hBN substrate provides a simple way to confine excitons in the MoSe<sub>2</sub> monolayer. The excitons confined within the domains and at the domain walls are spectrally separated because of a pronounced Stark shift. Moreover, the patterned light emission can be dynamically controlled by electrically gating the ferroelectric domains, introducing a functionality beyond other semiconductor moiré superlattices. Our findings chart an exciting pathway for integrating nanometer-scale moiré ferroelectric domains with various optically active functional layers, paving the way for advanced nanophotonics and metasurfaces.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt7789","citationCount":"0","resultStr":"{\"title\":\"Moiré ferroelectricity modulates light emission from a semiconductor monolayer\",\"authors\":\"Dong Seob Kim,&nbsp;Chengxin Xiao,&nbsp;Roy C. Dominguez,&nbsp;Zhida Liu,&nbsp;Hamza Abudayyeh,&nbsp;Kyoungpyo Lee,&nbsp;Rigo Mayorga-Luna,&nbsp;Hyunsue Kim,&nbsp;Kenji Watanabe,&nbsp;Takashi Taniguchi,&nbsp;Chih-Kang Shih,&nbsp;Yoichi Miyahara,&nbsp;Wang Yao,&nbsp;Xiaoqin Li\",\"doi\":\"10.1126/sciadv.adt7789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Semiconductor moiré superlattices, characterized by their periodic spatial light emission, unveil a new paradigm of engineered photonic materials. Here, we show that ferroelectric moiré domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe<sub>2</sub> monolayer. The electrostatic potential at the surface of the t-hBN substrate provides a simple way to confine excitons in the MoSe<sub>2</sub> monolayer. The excitons confined within the domains and at the domain walls are spectrally separated because of a pronounced Stark shift. Moreover, the patterned light emission can be dynamically controlled by electrically gating the ferroelectric domains, introducing a functionality beyond other semiconductor moiré superlattices. Our findings chart an exciting pathway for integrating nanometer-scale moiré ferroelectric domains with various optically active functional layers, paving the way for advanced nanophotonics and metasurfaces.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adt7789\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adt7789\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt7789","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

半导体莫尔纳米超晶格以其周期性空间光发射为特征,揭示了工程光子材料的新范式。在这里,我们证明了在扭曲六方氮化硼(t-hBN)衬底中形成的铁电莫尔域可以调制相邻半导体MoSe2单层的光发射。t-hBN衬底表面的静电势提供了一种将激子限制在MoSe2单层中的简单方法。由于明显的斯塔克位移,限制在畴内和畴壁的激子在光谱上是分离的。此外,可以通过对铁电畴进行电控来动态控制图案光发射,从而引入超越其他半导体莫尔纳米超晶格的功能。我们的发现为将纳米尺度的摩尔铁电畴与各种光学活性功能层集成在一起开辟了一条令人兴奋的途径,为先进的纳米光子学和超表面铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Moiré ferroelectricity modulates light emission from a semiconductor monolayer

Moiré ferroelectricity modulates light emission from a semiconductor monolayer
Semiconductor moiré superlattices, characterized by their periodic spatial light emission, unveil a new paradigm of engineered photonic materials. Here, we show that ferroelectric moiré domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe2 monolayer. The electrostatic potential at the surface of the t-hBN substrate provides a simple way to confine excitons in the MoSe2 monolayer. The excitons confined within the domains and at the domain walls are spectrally separated because of a pronounced Stark shift. Moreover, the patterned light emission can be dynamically controlled by electrically gating the ferroelectric domains, introducing a functionality beyond other semiconductor moiré superlattices. Our findings chart an exciting pathway for integrating nanometer-scale moiré ferroelectric domains with various optically active functional layers, paving the way for advanced nanophotonics and metasurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信