Lucrezia C. Ferme, Allyson Q. Ryan, Robert Haase, Carl D. Modes, Caren Norden
{"title":"在视网膜形态发生过程中,及时的神经发生驱动着从向列状到结晶核填充的转变","authors":"Lucrezia C. Ferme, Allyson Q. Ryan, Robert Haase, Carl D. Modes, Caren Norden","doi":"10.1126/sciadv.adu6843","DOIUrl":null,"url":null,"abstract":"<div >Correct organogenesis depends on the timely coordination of developmental processes, such as cell proliferation, differentiation, and migration. This coordination is particularly critical in crowded tissues, such as pseudostratified epithelia (PSE) that are often found as organ precursors. They are composed of elongated epithelial cells with densely packed nuclei aligned along the apicobasal axis. While cell cycle–dependent nuclear movements in PSE are well studied, less is known about how nuclear packing influences tissue morphogenesis. To investigate this, we analyzed nuclear shapes, sizes, and neighborhood statistics in zebrafish neuroepithelia, focusing on the retinal PSE. We found that nuclei exhibit elongated shapes and biaxial nematic-like orientational order but remain positionally disordered. During retinal development, nuclear packing density increases, approaching theoretical limits. This occurs when the tissue transitions to a laminated structure and nuclear shapes are remodeled. Timely neurogenesis is critical as failure to initiate neurogenesis leads to tissue deformations. These findings highlight the influence of nuclear shape and positioning for organ morphogenesis.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu6843","citationCount":"0","resultStr":"{\"title\":\"Timely neurogenesis drives the transition from nematic to crystalline nuclear packing during retinal morphogenesis\",\"authors\":\"Lucrezia C. Ferme, Allyson Q. Ryan, Robert Haase, Carl D. Modes, Caren Norden\",\"doi\":\"10.1126/sciadv.adu6843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Correct organogenesis depends on the timely coordination of developmental processes, such as cell proliferation, differentiation, and migration. This coordination is particularly critical in crowded tissues, such as pseudostratified epithelia (PSE) that are often found as organ precursors. They are composed of elongated epithelial cells with densely packed nuclei aligned along the apicobasal axis. While cell cycle–dependent nuclear movements in PSE are well studied, less is known about how nuclear packing influences tissue morphogenesis. To investigate this, we analyzed nuclear shapes, sizes, and neighborhood statistics in zebrafish neuroepithelia, focusing on the retinal PSE. We found that nuclei exhibit elongated shapes and biaxial nematic-like orientational order but remain positionally disordered. During retinal development, nuclear packing density increases, approaching theoretical limits. This occurs when the tissue transitions to a laminated structure and nuclear shapes are remodeled. Timely neurogenesis is critical as failure to initiate neurogenesis leads to tissue deformations. These findings highlight the influence of nuclear shape and positioning for organ morphogenesis.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adu6843\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adu6843\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu6843","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Timely neurogenesis drives the transition from nematic to crystalline nuclear packing during retinal morphogenesis
Correct organogenesis depends on the timely coordination of developmental processes, such as cell proliferation, differentiation, and migration. This coordination is particularly critical in crowded tissues, such as pseudostratified epithelia (PSE) that are often found as organ precursors. They are composed of elongated epithelial cells with densely packed nuclei aligned along the apicobasal axis. While cell cycle–dependent nuclear movements in PSE are well studied, less is known about how nuclear packing influences tissue morphogenesis. To investigate this, we analyzed nuclear shapes, sizes, and neighborhood statistics in zebrafish neuroepithelia, focusing on the retinal PSE. We found that nuclei exhibit elongated shapes and biaxial nematic-like orientational order but remain positionally disordered. During retinal development, nuclear packing density increases, approaching theoretical limits. This occurs when the tissue transitions to a laminated structure and nuclear shapes are remodeled. Timely neurogenesis is critical as failure to initiate neurogenesis leads to tissue deformations. These findings highlight the influence of nuclear shape and positioning for organ morphogenesis.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.