用于自旋扭矩产生的纳米厚Si/Al梯度材料

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Taisuke Horaguchi, Cong He, Zhenchao Wen, Hayato Nakayama, Tadakatsu Ohkubo, Seiji Mitani, Hiroaki Sukegawa, Junji Fujimoto, Kazuto Yamanoi, Mamoru Matsuo, Yukio Nozaki
{"title":"用于自旋扭矩产生的纳米厚Si/Al梯度材料","authors":"Taisuke Horaguchi,&nbsp;Cong He,&nbsp;Zhenchao Wen,&nbsp;Hayato Nakayama,&nbsp;Tadakatsu Ohkubo,&nbsp;Seiji Mitani,&nbsp;Hiroaki Sukegawa,&nbsp;Junji Fujimoto,&nbsp;Kazuto Yamanoi,&nbsp;Mamoru Matsuo,&nbsp;Yukio Nozaki","doi":"10.1126/sciadv.adr9481","DOIUrl":null,"url":null,"abstract":"<div >Green materials for efficient charge-to-spin conversion are desired for common spintronic applications. Recent studies have documented the efficient generation of spin torque using spin-orbit interactions (SOIs); however, SOI use relies on the employment of rare metals such as platinum. Here, we demonstrate that a nanometer-thick gradient from silicon to aluminum, which consists of readily available elements from earth resources, can produce a spin torque as large as that of platinum despite the weak SOI of these compositions. The spin torque efficiency can be improved by decreasing the thickness of the gradient, while a sharp interface was not found to increase the spin torque. Moreover, the electric conductivity of the gradient material can be up to twice as large as that of platinum, which provides a way to reduce Joule heating losses in spintronic devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9481","citationCount":"0","resultStr":"{\"title\":\"Nanometer-thick Si/Al gradient materials for spin torque generation\",\"authors\":\"Taisuke Horaguchi,&nbsp;Cong He,&nbsp;Zhenchao Wen,&nbsp;Hayato Nakayama,&nbsp;Tadakatsu Ohkubo,&nbsp;Seiji Mitani,&nbsp;Hiroaki Sukegawa,&nbsp;Junji Fujimoto,&nbsp;Kazuto Yamanoi,&nbsp;Mamoru Matsuo,&nbsp;Yukio Nozaki\",\"doi\":\"10.1126/sciadv.adr9481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Green materials for efficient charge-to-spin conversion are desired for common spintronic applications. Recent studies have documented the efficient generation of spin torque using spin-orbit interactions (SOIs); however, SOI use relies on the employment of rare metals such as platinum. Here, we demonstrate that a nanometer-thick gradient from silicon to aluminum, which consists of readily available elements from earth resources, can produce a spin torque as large as that of platinum despite the weak SOI of these compositions. The spin torque efficiency can be improved by decreasing the thickness of the gradient, while a sharp interface was not found to increase the spin torque. Moreover, the electric conductivity of the gradient material can be up to twice as large as that of platinum, which provides a way to reduce Joule heating losses in spintronic devices.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adr9481\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adr9481\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr9481","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

绿色材料的有效电荷自旋转换是常见的自旋电子应用所需要的。最近的研究记录了利用自旋-轨道相互作用(SOIs)有效地产生自旋扭矩;然而,SOI的使用依赖于使用稀有金属,如铂。在这里,我们证明了从硅到铝的纳米厚梯度,由地球资源中现成的元素组成,可以产生与铂一样大的自旋扭矩,尽管这些成分的SOI很弱。减小梯度厚度可以提高自旋转矩效率,但没有发现尖锐的界面可以增加自旋转矩。此外,梯度材料的导电性可以达到铂的两倍,这为减少自旋电子器件中的焦耳热损失提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanometer-thick Si/Al gradient materials for spin torque generation

Nanometer-thick Si/Al gradient materials for spin torque generation
Green materials for efficient charge-to-spin conversion are desired for common spintronic applications. Recent studies have documented the efficient generation of spin torque using spin-orbit interactions (SOIs); however, SOI use relies on the employment of rare metals such as platinum. Here, we demonstrate that a nanometer-thick gradient from silicon to aluminum, which consists of readily available elements from earth resources, can produce a spin torque as large as that of platinum despite the weak SOI of these compositions. The spin torque efficiency can be improved by decreasing the thickness of the gradient, while a sharp interface was not found to increase the spin torque. Moreover, the electric conductivity of the gradient material can be up to twice as large as that of platinum, which provides a way to reduce Joule heating losses in spintronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信