小脑深部核谷氨酸能神经元的异常输出介导张力障碍运动

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xue-Mei Wu, Bin Lu, Jun-Yan He, Yu-Xian Zhang, Zhi-Ying Wu, Zhi-Qi Xiong
{"title":"小脑深部核谷氨酸能神经元的异常输出介导张力障碍运动","authors":"Xue-Mei Wu,&nbsp;Bin Lu,&nbsp;Jun-Yan He,&nbsp;Yu-Xian Zhang,&nbsp;Zhi-Ying Wu,&nbsp;Zhi-Qi Xiong","doi":"10.1126/sciadv.adp2377","DOIUrl":null,"url":null,"abstract":"<div >Dystonia, characterized by repetitive twisting movements or abnormal postures, has been linked to the deep cerebellar nuclei (DCN). However, the specific roles of distinct neuronal populations within the DCN in driving dystonic behaviors remain unclear. This study explores the contributions of three distinct groups of DCN neurons in an animal model of paroxysmal dystonia harboring a mutation in the proline-rich transmembrane protein 2 (<i>Prrt2</i>) gene. We observed sustained calcium activity elevation across glutamatergic, glycinergic, and GABAergic inferior olive (IO)–projecting neurons within the DCN during episodes of dystonia in <i>Prrt2</i>-mutant mice. However, only the optogenetic activation of DCN glutamatergic neurons, but not glycinergic or GABAergic IO-projecting neurons, elicited dystonia-like behaviors in normal mice. Selective ablation of DCN glutamatergic neurons effectively eliminated aberrant cerebellar DCN outputs and alleviated dystonia attacks in both <i>Prrt2</i>-associated and kainic acid–induced dystonia mouse models. Collectively, our findings highlight the pivotal role of aberrant activation of DCN glutamatergic neurons in the neuropathological mechanisms underlying cerebellar-originated dystonia.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 19","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp2377","citationCount":"0","resultStr":"{\"title\":\"Aberrant outputs of glutamatergic neurons in deep cerebellar nuclei mediate dystonic movements\",\"authors\":\"Xue-Mei Wu,&nbsp;Bin Lu,&nbsp;Jun-Yan He,&nbsp;Yu-Xian Zhang,&nbsp;Zhi-Ying Wu,&nbsp;Zhi-Qi Xiong\",\"doi\":\"10.1126/sciadv.adp2377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Dystonia, characterized by repetitive twisting movements or abnormal postures, has been linked to the deep cerebellar nuclei (DCN). However, the specific roles of distinct neuronal populations within the DCN in driving dystonic behaviors remain unclear. This study explores the contributions of three distinct groups of DCN neurons in an animal model of paroxysmal dystonia harboring a mutation in the proline-rich transmembrane protein 2 (<i>Prrt2</i>) gene. We observed sustained calcium activity elevation across glutamatergic, glycinergic, and GABAergic inferior olive (IO)–projecting neurons within the DCN during episodes of dystonia in <i>Prrt2</i>-mutant mice. However, only the optogenetic activation of DCN glutamatergic neurons, but not glycinergic or GABAergic IO-projecting neurons, elicited dystonia-like behaviors in normal mice. Selective ablation of DCN glutamatergic neurons effectively eliminated aberrant cerebellar DCN outputs and alleviated dystonia attacks in both <i>Prrt2</i>-associated and kainic acid–induced dystonia mouse models. Collectively, our findings highlight the pivotal role of aberrant activation of DCN glutamatergic neurons in the neuropathological mechanisms underlying cerebellar-originated dystonia.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 19\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adp2377\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adp2377\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp2377","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

肌张力障碍的特征是重复的扭曲运动或异常的姿势,与小脑深部核(DCN)有关。然而,DCN内不同神经元群在驱动肌张力障碍行为中的具体作用尚不清楚。本研究探讨了三组不同的DCN神经元在富含脯氨酸的跨膜蛋白2 (Prrt2)基因突变的阵发性肌张力障碍动物模型中的作用。在prrt2突变小鼠肌张力障碍发作期间,我们观察到DCN内谷氨酸能、甘氨酸能和gaba能下橄榄(IO)投射神经元的钙活性持续升高。然而,在正常小鼠中,只有DCN谷氨酸能神经元的光遗传激活,而不是甘氨酸能或gaba能io投射神经元的光遗传激活,才会引发类似肌张力障碍的行为。在prrt2相关和kainic酸诱导的肌张力障碍小鼠模型中,选择性消融DCN谷氨酸能神经元可有效消除异常的小脑DCN输出并减轻肌张力障碍发作。总之,我们的研究结果强调了DCN谷氨酸能神经元异常激活在小脑源性肌张力障碍的神经病理机制中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Aberrant outputs of glutamatergic neurons in deep cerebellar nuclei mediate dystonic movements

Aberrant outputs of glutamatergic neurons in deep cerebellar nuclei mediate dystonic movements
Dystonia, characterized by repetitive twisting movements or abnormal postures, has been linked to the deep cerebellar nuclei (DCN). However, the specific roles of distinct neuronal populations within the DCN in driving dystonic behaviors remain unclear. This study explores the contributions of three distinct groups of DCN neurons in an animal model of paroxysmal dystonia harboring a mutation in the proline-rich transmembrane protein 2 (Prrt2) gene. We observed sustained calcium activity elevation across glutamatergic, glycinergic, and GABAergic inferior olive (IO)–projecting neurons within the DCN during episodes of dystonia in Prrt2-mutant mice. However, only the optogenetic activation of DCN glutamatergic neurons, but not glycinergic or GABAergic IO-projecting neurons, elicited dystonia-like behaviors in normal mice. Selective ablation of DCN glutamatergic neurons effectively eliminated aberrant cerebellar DCN outputs and alleviated dystonia attacks in both Prrt2-associated and kainic acid–induced dystonia mouse models. Collectively, our findings highlight the pivotal role of aberrant activation of DCN glutamatergic neurons in the neuropathological mechanisms underlying cerebellar-originated dystonia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信