Jack Anderson, Florin P. Boca, Cristian Cobeli, Alexandru Zaharescu
{"title":"由快速移动的观察者观察到的向邻翻转模曲线点的角分布","authors":"Jack Anderson, Florin P. Boca, Cristian Cobeli, Alexandru Zaharescu","doi":"10.1002/mana.12016","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> be a fixed non-zero integer. For every <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <msub>\n <mi>R</mi>\n <mo>+</mo>\n </msub>\n </mrow>\n <annotation>$t\\in \\mathbb {R}_+$</annotation>\n </semantics></math> and every prime <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>, consider the angles between rays from an observer located at the point <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>t</mi>\n <msubsup>\n <mi>J</mi>\n <mi>p</mi>\n <mn>2</mn>\n </msubsup>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(-tJ_p^2,0)$</annotation>\n </semantics></math> on the real axis toward the set of all integral solutions <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(x,y)$</annotation>\n </semantics></math> of the equation <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>y</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>−</mo>\n <msup>\n <mi>x</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>≡</mo>\n <mi>h</mi>\n <mfenced>\n <mi>mod</mi>\n <mspace></mspace>\n <mi>p</mi>\n </mfenced>\n </mrow>\n <annotation>$y^{-1}-x^{-1}\\equiv h \\left(\\mathrm{ mod\\;}p\\right)$</annotation>\n </semantics></math> in the square <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <msub>\n <mi>J</mi>\n <mi>p</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>J</mi>\n <mi>p</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$[-J_p,J_p]^2$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mi>p</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$J_p=(p-1)/2$</annotation>\n </semantics></math>. This set of points can be seen as a generic model for any target set with points randomly distributed on the integer coordinates of a square, in which, apart from a small number of exceptions, exactly one point lies above any abscissa.</p><p>We prove the existence of the limiting gap distribution for this set of angles as <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$p\\rightarrow \\infty$</annotation>\n </semantics></math>, providing explicit formulas for the corresponding density function, which turns out to be independent of <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>. The resulted gap distribution function shows the existence of a sequence of threshold points between which the distribution of seen angles has different shapes. This provides a tool of reference in guiding the observer, which allows one to find and control the position relative to the universe of observed points.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1617-1632"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12016","citationCount":"0","resultStr":"{\"title\":\"Angular distribution toward the points of the neighbor-flips modular curve seen by a fast moving observer\",\"authors\":\"Jack Anderson, Florin P. Boca, Cristian Cobeli, Alexandru Zaharescu\",\"doi\":\"10.1002/mana.12016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> be a fixed non-zero integer. For every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>R</mi>\\n <mo>+</mo>\\n </msub>\\n </mrow>\\n <annotation>$t\\\\in \\\\mathbb {R}_+$</annotation>\\n </semantics></math> and every prime <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>, consider the angles between rays from an observer located at the point <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>t</mi>\\n <msubsup>\\n <mi>J</mi>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msubsup>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(-tJ_p^2,0)$</annotation>\\n </semantics></math> on the real axis toward the set of all integral solutions <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(x,y)$</annotation>\\n </semantics></math> of the equation <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>y</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>−</mo>\\n <msup>\\n <mi>x</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>≡</mo>\\n <mi>h</mi>\\n <mfenced>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$y^{-1}-x^{-1}\\\\equiv h \\\\left(\\\\mathrm{ mod\\\\;}p\\\\right)$</annotation>\\n </semantics></math> in the square <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <msub>\\n <mi>J</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>J</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <annotation>$[-J_p,J_p]^2$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>J</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$J_p=(p-1)/2$</annotation>\\n </semantics></math>. This set of points can be seen as a generic model for any target set with points randomly distributed on the integer coordinates of a square, in which, apart from a small number of exceptions, exactly one point lies above any abscissa.</p><p>We prove the existence of the limiting gap distribution for this set of angles as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$p\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>, providing explicit formulas for the corresponding density function, which turns out to be independent of <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>. The resulted gap distribution function shows the existence of a sequence of threshold points between which the distribution of seen angles has different shapes. This provides a tool of reference in guiding the observer, which allows one to find and control the position relative to the universe of observed points.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 5\",\"pages\":\"1617-1632\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12016\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12016","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设h $h$是一个固定的非零整数。对于每一个t∈R + $t\in \mathbb {R}_+$和每一个' p $p$,考虑位于点(- t jp2)的观察者发出的光线之间的角度,0) $(-tJ_p^2,0)$在实轴上指向所有积分解的集合(x,Y) $(x,y)$ (Y−1−x−1≡h mod p $y^{-1}-x^{-1}\equiv h \left(\mathrm{ mod\;}p\right)$在正方形中[−J p ., J] 2 $[-J_p,J_p]^2$,其中J p = (p−1)/ 2 $J_p=(p-1)/2$。这组点可以看作是任意目标集的通用模型,目标集的点随机分布在正方形的整数坐标上,其中除了少数例外,任何横坐标上都有一个点。我们证明了这组角的极限间隙分布为p→∞$p\rightarrow \infty$的存在性,给出了相应的密度函数的显式公式,该函数与h无关$h$。所得的间隙分布函数表明存在一系列阈值点,这些阈值点之间的角度分布具有不同的形状。这为引导观测者提供了一个参考工具,它允许人们找到和控制相对于观测点的位置。
Angular distribution toward the points of the neighbor-flips modular curve seen by a fast moving observer
Let be a fixed non-zero integer. For every and every prime , consider the angles between rays from an observer located at the point on the real axis toward the set of all integral solutions of the equation in the square , where . This set of points can be seen as a generic model for any target set with points randomly distributed on the integer coordinates of a square, in which, apart from a small number of exceptions, exactly one point lies above any abscissa.
We prove the existence of the limiting gap distribution for this set of angles as , providing explicit formulas for the corresponding density function, which turns out to be independent of . The resulted gap distribution function shows the existence of a sequence of threshold points between which the distribution of seen angles has different shapes. This provides a tool of reference in guiding the observer, which allows one to find and control the position relative to the universe of observed points.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index