由快速移动的观察者观察到的向邻翻转模曲线点的角分布

IF 0.8 3区 数学 Q2 MATHEMATICS
Jack Anderson, Florin P. Boca, Cristian Cobeli, Alexandru Zaharescu
{"title":"由快速移动的观察者观察到的向邻翻转模曲线点的角分布","authors":"Jack Anderson,&nbsp;Florin P. Boca,&nbsp;Cristian Cobeli,&nbsp;Alexandru Zaharescu","doi":"10.1002/mana.12016","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> be a fixed non-zero integer. For every <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <msub>\n <mi>R</mi>\n <mo>+</mo>\n </msub>\n </mrow>\n <annotation>$t\\in \\mathbb {R}_+$</annotation>\n </semantics></math> and every prime <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>, consider the angles between rays from an observer located at the point <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>t</mi>\n <msubsup>\n <mi>J</mi>\n <mi>p</mi>\n <mn>2</mn>\n </msubsup>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(-tJ_p^2,0)$</annotation>\n </semantics></math> on the real axis toward the set of all integral solutions <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(x,y)$</annotation>\n </semantics></math> of the equation <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>y</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>−</mo>\n <msup>\n <mi>x</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>≡</mo>\n <mi>h</mi>\n <mfenced>\n <mi>mod</mi>\n <mspace></mspace>\n <mi>p</mi>\n </mfenced>\n </mrow>\n <annotation>$y^{-1}-x^{-1}\\equiv h \\left(\\mathrm{ mod\\;}p\\right)$</annotation>\n </semantics></math> in the square <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <msub>\n <mi>J</mi>\n <mi>p</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>J</mi>\n <mi>p</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <annotation>$[-J_p,J_p]^2$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mi>p</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$J_p=(p-1)/2$</annotation>\n </semantics></math>. This set of points can be seen as a generic model for any target set with points randomly distributed on the integer coordinates of a square, in which, apart from a small number of exceptions, exactly one point lies above any abscissa.</p><p>We prove the existence of the limiting gap distribution for this set of angles as <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$p\\rightarrow \\infty$</annotation>\n </semantics></math>, providing explicit formulas for the corresponding density function, which turns out to be independent of <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>. The resulted gap distribution function shows the existence of a sequence of threshold points between which the distribution of seen angles has different shapes. This provides a tool of reference in guiding the observer, which allows one to find and control the position relative to the universe of observed points.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1617-1632"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12016","citationCount":"0","resultStr":"{\"title\":\"Angular distribution toward the points of the neighbor-flips modular curve seen by a fast moving observer\",\"authors\":\"Jack Anderson,&nbsp;Florin P. Boca,&nbsp;Cristian Cobeli,&nbsp;Alexandru Zaharescu\",\"doi\":\"10.1002/mana.12016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> be a fixed non-zero integer. For every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>R</mi>\\n <mo>+</mo>\\n </msub>\\n </mrow>\\n <annotation>$t\\\\in \\\\mathbb {R}_+$</annotation>\\n </semantics></math> and every prime <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>, consider the angles between rays from an observer located at the point <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>t</mi>\\n <msubsup>\\n <mi>J</mi>\\n <mi>p</mi>\\n <mn>2</mn>\\n </msubsup>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(-tJ_p^2,0)$</annotation>\\n </semantics></math> on the real axis toward the set of all integral solutions <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(x,y)$</annotation>\\n </semantics></math> of the equation <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>y</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>−</mo>\\n <msup>\\n <mi>x</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>≡</mo>\\n <mi>h</mi>\\n <mfenced>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mi>p</mi>\\n </mfenced>\\n </mrow>\\n <annotation>$y^{-1}-x^{-1}\\\\equiv h \\\\left(\\\\mathrm{ mod\\\\;}p\\\\right)$</annotation>\\n </semantics></math> in the square <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <msub>\\n <mi>J</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>J</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n <annotation>$[-J_p,J_p]^2$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>J</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>p</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$J_p=(p-1)/2$</annotation>\\n </semantics></math>. This set of points can be seen as a generic model for any target set with points randomly distributed on the integer coordinates of a square, in which, apart from a small number of exceptions, exactly one point lies above any abscissa.</p><p>We prove the existence of the limiting gap distribution for this set of angles as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$p\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>, providing explicit formulas for the corresponding density function, which turns out to be independent of <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>. The resulted gap distribution function shows the existence of a sequence of threshold points between which the distribution of seen angles has different shapes. This provides a tool of reference in guiding the observer, which allows one to find and control the position relative to the universe of observed points.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 5\",\"pages\":\"1617-1632\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12016\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12016","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设h $h$是一个固定的非零整数。对于每一个t∈R + $t\in \mathbb {R}_+$和每一个' p $p$,考虑位于点(- t jp2)的观察者发出的光线之间的角度,0) $(-tJ_p^2,0)$在实轴上指向所有积分解的集合(x,Y) $(x,y)$ (Y−1−x−1≡h mod p $y^{-1}-x^{-1}\equiv h \left(\mathrm{ mod\;}p\right)$在正方形中[−J p ., J] 2 $[-J_p,J_p]^2$,其中J p = (p−1)/ 2 $J_p=(p-1)/2$。这组点可以看作是任意目标集的通用模型,目标集的点随机分布在正方形的整数坐标上,其中除了少数例外,任何横坐标上都有一个点。我们证明了这组角的极限间隙分布为p→∞$p\rightarrow \infty$的存在性,给出了相应的密度函数的显式公式,该函数与h无关$h$。所得的间隙分布函数表明存在一系列阈值点,这些阈值点之间的角度分布具有不同的形状。这为引导观测者提供了一个参考工具,它允许人们找到和控制相对于观测点的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Angular distribution toward the points of the neighbor-flips modular curve seen by a fast moving observer

Angular distribution toward the points of the neighbor-flips modular curve seen by a fast moving observer

Let h $h$ be a fixed non-zero integer. For every t R + $t\in \mathbb {R}_+$ and every prime p $p$ , consider the angles between rays from an observer located at the point ( t J p 2 , 0 ) $(-tJ_p^2,0)$ on the real axis toward the set of all integral solutions ( x , y ) $(x,y)$ of the equation  y 1 x 1 h mod p $y^{-1}-x^{-1}\equiv h \left(\mathrm{ mod\;}p\right)$ in the square [ J p , J p ] 2 $[-J_p,J_p]^2$ , where J p = ( p 1 ) / 2 $J_p=(p-1)/2$ . This set of points can be seen as a generic model for any target set with points randomly distributed on the integer coordinates of a square, in which, apart from a small number of exceptions, exactly one point lies above any abscissa.

We prove the existence of the limiting gap distribution for this set of angles as p $p\rightarrow \infty$ , providing explicit formulas for the corresponding density function, which turns out to be independent of h $h$ . The resulted gap distribution function shows the existence of a sequence of threshold points between which the distribution of seen angles has different shapes. This provides a tool of reference in guiding the observer, which allows one to find and control the position relative to the universe of observed points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信