求助PDF
{"title":"高阶Sobolev范数下Navier-Stokes方程近似解的收敛性","authors":"Yuta Koizumi","doi":"10.1002/mana.12009","DOIUrl":null,"url":null,"abstract":"<p>We show that the approximating solutions <span></span><math>\n <semantics>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>u</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <mi>∞</mi>\n </msubsup>\n <annotation>$\\lbrace u_j\\rbrace _{j=0}^{\\infty }$</annotation>\n </semantics></math> of the Navier–Stokes equations constructed by Kato with the initial data <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msubsup>\n <mi>L</mi>\n <mi>σ</mi>\n <mi>n</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u(0) \\in L_{\\sigma }^{n}(\\mathbb {R}^{n})$</annotation>\n </semantics></math> converge to the local strong solution <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> in the topology of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,q}(\\mathbb {R}^n)$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$k \\in \\mathbb {N}$</annotation>\n </semantics></math> provided the convergence in the scaling invariant norm in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^q(\\mathbb {R}^n)$</annotation>\n </semantics></math> with the time weight holds. As an application of our convergence, it is clarified that the approximation of the pressure is established in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k+1,q}(\\mathbb {R}^n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1663-1679"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of approximating solutions of the Navier–Stokes equations in higher ordered Sobolev norms\",\"authors\":\"Yuta Koizumi\",\"doi\":\"10.1002/mana.12009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the approximating solutions <span></span><math>\\n <semantics>\\n <msubsup>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>u</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <mi>∞</mi>\\n </msubsup>\\n <annotation>$\\\\lbrace u_j\\\\rbrace _{j=0}^{\\\\infty }$</annotation>\\n </semantics></math> of the Navier–Stokes equations constructed by Kato with the initial data <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n <mo>∈</mo>\\n <msubsup>\\n <mi>L</mi>\\n <mi>σ</mi>\\n <mi>n</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$u(0) \\\\in L_{\\\\sigma }^{n}(\\\\mathbb {R}^{n})$</annotation>\\n </semantics></math> converge to the local strong solution <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math> in the topology of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W^{k,q}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$k \\\\in \\\\mathbb {N}$</annotation>\\n </semantics></math> provided the convergence in the scaling invariant norm in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>q</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^q(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> with the time weight holds. As an application of our convergence, it is clarified that the approximation of the pressure is established in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W^{k+1,q}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 5\",\"pages\":\"1663-1679\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用